
JOURNAL OF APPROXIMATION THEORY 42, 299-386 (1984)

Asymptotics of
Diagonal Hermite-Pade Polynomials*

J. NUTTALL

Department of Physics, University of Western Ontario,
London, Ontario N6A 3K7, Canada

Communicated by Oved Shisha

Received June 28, 1983

Contents. I. INTRODUCTION. 1.1. Bemstein-Szego orthogonal polynomial
asymptotics; 1.2. Pade approximants; 1.3. Hermite-Pade polynomials; 1.4. Outline
of conjecture. 2. ALGEBRAIC PRELIMINARIES. 2.1. Relation between H-P
polynomials of different types; 2.2. Generalized orthogonal polynomials;
2.3. Reproducing kernels; 2.4. Multiple integral formula for generalized orthogonal
polynomials; 2.5. Christoffel's formula. 3. CONJECTURE ON ASYMPTOTIC BEHAVIOR.
3.1. Riemann surface; 3.2. Conjecture---case 1; 3.3. Conjecture-case 2;
3.4. Choice of Riemann surface. 4. RIGOROUS RESULTS. 4.1. Meromorphic
functions-type I polynomials; 4.2. Meromorphic functions-type II polynomials;
4.3. Special cases of meromorphic functions: 4.3.1. Akhiezer polynomials;
4.3.2. Bernstein-Szegii polynomials; 4.3.3. Jacobi-Dumas polynomials;
4.3.4. Examples with m > 2; 4.4. Rigorous generalizations of the results of Section
4.3; 4.5. Asymptotic normality; 4.6. Hypergeometric functions; 4.7. Contiguous
generalized hypergeometric functions: 4.7.1. Dual module; 4.7.2. Hermite-Pade
polynomials----example; 4.7.3. Asymptotic behavior. 5. HEURISTIC AND NUMERICAL
RESULTS. 5.1. Generalized Jacobi polynomials; 5.2. Hypergeometric functions
generalization of Section 4.6; 5.3. Saddle-point method. 6. POSSIBLE METHODS OF
PROOF. 6.1. Extension of Bernstein-Szego method; 6.2. Alternative integral
equation method; 6.3. Other Approaches.

1. INTRODUCTION

The topic of this paper has its roots deep in the past in work on continued
fractions, Pade approximants and orthogonal polynomials. As is well known,
and summarized in Section 1.2, there is an intimate relation between
orthogonal polynomials and the polynomials used in the definition of Pade
approximants. This means that the classical asymptotic results of Bernstein
and Szego, described in Szego's book [45], and reviewed in Section 1.1,
imply corresponding results about the asymptotic behavior of the
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polynomials of high degree used in diagonal or near diagonal Pade approx
imants to functions of the appropriate form, Eq. (1.2.9).

Our purpose here is to present a conjecture, along with evidence in its
support, which generalizes these results in two directions. In the first place
we consider a broader class of functions having possibly complex branch
points. Nowhere in the discussion will use be made of positivity or reality.
Secondly, we treat the two types of Hermite-Pade polynomials (defined in
Section 1.3) of which the polynomials used in Pade approximants are a
special case.

It will be seen that the conjecture carries over two main features of the
Bernstein-Szego results. First of all, the leading part of the asymptotic
behavior of the polynomials has a universal form for a large class of
functions (corresponding to a class of weights in the classical case). In the
second place, the more complete version of the asymptotic form is obtained
by solving an appropriate Hilbert problem. In the case when m functions are
being simultaneously approximated, the Hilbert problem is to be solved on a
Riemann surface :JR of m sheets. The construction of :JR for a given set of
functions is an important unsolved problem, although the case m = 2 is
reasonably well understood (Section 3.4).

In Section 1.4, we outline how the conjecture applies to the case m = 2,
Pade approximants, and discuss the general situation in Section 3. Section 4
contains a survey of some special cases where a rigorous discussion is
possible, while Section 5 gives support on a heuristic or numerical basis. The
conjecture has been constructed in order to be consistent with all the results
of these two sections. In Section 6 we present some ideas on methods for
proving the conjecture. The algebraic results of Section 2 could be omitted
until they are required.

The author wishes to acknowledge a number of colleagues who have at
different times collaborated in the work described here, among them R. T.
Baumel, S. K. Burley, S. O. John, S. R. Vatsya and C. J. Wherry. For
helpful communications he thanks D. Bessis, M. G. de Bruin, A. Edrei, J.
Kral, A. Magnus, M. M. Schiffer, J. L. Ullman and others. For providing the
stimulus and encouragement to carry out the task of preparing this article, he
is greatly indebted to David and Gregory Chudnovsky. Finally, the author
would like to thank most warmly John Gammel, who introduced him to the
subject and whose interest and enthusiasm continue to provide inspiration.

1.1. Bernstein-Szeg6 Orthogonal Polynomial Asymptotics

One of the main results, stated as Theorem 12.1.2 by Szego [45], applies
to the polynomial p(z) of degree n orthogonal with respect to the real weight
w(z) on the interval L = {z: -1 :::;;; z :::;;; I}, so that

f dz w(z) p(z) Zk = 0, k = 0,..., n - 1. (1. I.l)
L
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Szego requires w(z) to have the form

w(z) = (1 - Z2)-1/2 a(z)

301

(1.1.2)

with a(z) ~ 0, and the integrals

rd() a(cos (),
o

r d() Ilog a(cos ()I
o

(1.1.3)

must exist. In this case it is shown that p(z) is unique up to normalization
and Szego's result is equivalent to

p(z) ~ X(z)
n .... co

(1.1.4)

for any complex z away from the line segment L. The function X(z), analytic
in the complex plane cut along L and proportional to zn at 00, may be
characterized by the condition involving the limiting values of X as z -+ L
from opposite sides

It may be shown that

z EL. (1.1.5)

x(z) = exp(mp(z» h(z) (1.1.6)

where exp(n~(z» satisfies (1.1.5) with a = 1, and h(z) is independent of n.
Explicitly

(1.1.7)

where the branch is chosen so that ~(z) -log z near z = 00. An explicit form
for h(z) is also readily available.

With further restrictions on the weight function it is possible to give the
asymptotic form of p(z) on L. Thus, Theorem 12.1.4 of [5] states that,
provided a(z) is strictly positive, z E L, and satisfies the smoothness con
dition

then

la(cos«() +0» - a(cos ()I < const.llog ol-I-A, A> 1 (1.1.8)

(1.1.9)

The zeros of p(z) all lie on L and are distributed asymptotically with a
density proportional to

I~/(Z)I = j(Z2 _1)-I/2j. (1.1.10)
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All the above results are proved in Szeg6's book [45], although in some
cases we have changed the manner of presentation to fit in with our further
development.

1.2. Pade Approximants

Suppose that F(x) is analytic in x near to x =0. Polynomials PI(p, x),
P2(p, x) of degrees PI' P2 respectively are defined by the condition

The [PI/P2] Pade approximant to F(x) is

[PI/P2] = -PI(p, x)/P2(P, x).

(1.2.1 )

(1.2.2)

Note that the polynomials p/(p, x) always exist but may not be unique.
There is a close connection between the denominator polynomial of a

Pade approximant and an appropriate orthogonal polynomial. Thus take the
case PI = P2 = n and write

i= 1,2 (1.2.3 )

where z = X-I. Then the polynomials p/(z) of degree n satisfy.

(1.2.4)

where j(z) = F(z -I). If piz) is any solution of (1.2.4), then application of
Cauchy's theorem to (1.2.4) shows that the corresponding PI(Z) is given by

p (z) = -f(00) p (z) - _1_. J dt j(t) (Pit) - P2(Z»
I 2 2m r t - z

(1.2.5)

where r is any contour enclosing all the singularities of j(t) in a counter
clockwise sense.

For such a contour r (1.2.4) gives

J dz j(z) P2(Z) Zk = 0,
r

k= 0,..., n - 1. (1.2.6)

Equation (1.2.6) continues to hold if r is distorted in any way that avoids
crossing singularities ofj(z). In particular, ifj(z) is analytic outside L, then
r may be collapsed around Land (1.2.6) becomes

k=O,..., n - 1 (1.2.7)
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provided that the integral makes sense. We see that we have obtained (1.1.1)
if we set

w(z) = const.(f+(z) - f_(z)), zEL, (1.2.8)

and identify P2(Z) with p(z).
The conclusion is that any polynomial corresponding to the denominator

of the [n/n] Pade approximant to F(x) = f(x - I) is an orthogonal polynomial
in the sense (1.2.6) and the converse also holds. In particular a polynomial
piz) corresponding to the function

f(z)=f dt w(t)
L t-z

(1.2.9)

is an orthogonal polynomial in the sense (1.1.1) and vice versa.
It should be noted that our use of the word "orthogonal" to describe

polynomials satisfying (1.2.6) may differ from normal terminology. Brezinski
[9] uses "general orthogonal polynomial" instead. We have called the
polynomials discussed in Section 2.3 "generalized orthogonal polynomials."

From (1.2.5) we see that the error in the [n/n] Pade approximant may be
written

[n/n]- f(z) = -PI(Z)/P2(Z) - f(z)

= 1 f dt f(t) pit)
2nip2(z) r t - z

= 1 f dt f(t) p~(t)
2nip~(z) r t - z

(1.2.10)

using orthogonality. Whenf(z) is of the form (1.2.9) we may use the results
of Section 1.1 to see that the diagonal Pade approximants to f(z) converge
for any z outside L. This follows since, on L, Re ~(z) = 0, whereas elsewhere
Re ~(z) > 0 and also the function h(z), independent of n, does not vanish.
Indeed the error satisfies the bound

for any ,u < Re ?(z).

l[n/n]-f(z)1 <const. exp(-2n,u) (1.2.11 )

1.3. Hermite-Pade Polynomials

The equation (1.2.1) used in the definition of Pade approximants may be
generalized in two ways if several functions Fix), j = 1,..., m, analytic near
x = 0 are available. For particular choices of Fix) these forms were in fact
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given by Hermite [19, 20] before the notion of Pade approximants was
introduced.

The polynomials of type I (Latin) Pip, x), j = 1,..., m, are defined by

m

L Pj(P, x) Fix) = O(XU
-

I
)

j=1

with

(1.3.1)

j= 1,...,m (1.3.2)

and

m

(1 = L Pj
j=1

for any set of positive integers Pj'
The polynomials of type II (German) Qj(P, x), j = 1,..., m, satisfy

(1.3.3)

with

i,j=I,...,m (1.3.4)

j= 1,... ,m. (1.3.5)

As with Pade approximants, these polynomials always exist but may not
be unique. Let be suppose throughout that FI(O) *" O. The point
P= (pp"" Pm) is called normal if every solution of (1.3.1) is such that the
order of the right-hand side is exactly (1- 1. It follows [26] that, at a normal
point, the solution of (1.3.1) is unique up to a constant multiplicative factor,
and it may also be shown that the type II polynomials {Qj(P, x)} are unique
up to a scalar multiple, with QICO, 0) *" O.

In the case m= 2, both types of polynomials reduce to those involved in
Pade approximants if we choose F I (x) = 1.

It turns out, as explained in Section 2.1, that there are relations between
the two types of polynomials that allow (in general) the determination of one
set in terms of m sets of the other type.

1.4. Outline of Conjecture--Pade Case

It might be thought that the zeros of p(z), the Bernstein-Szego orthogonal
polynomial, lie on L because this is the path used in the integration which
defines orthogonality, but a little reflection shows this view to be incorrect.
For suppose we take another arc L' E C joining the points -1, 1. If w(z) is
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analytic in that part of C lying between Land L' then (1.1.1) could also be
written as

f dz w(z) p(z) Zk = 0,
L'

k=O,...,n -1 (1.4.1 )

so that the same polynomial p(z) results from orthogonality on L' and of
course its zeros are on L, not on L'. We see that L appears to be preferred
among arcs joining the points -1, 1 when we use our definition of
orthogonality (The situation would be different if complex conjugation were
involved. See Widom [47 D.

Let us rephrase the same conclusion in the language of Pade approx
imants. The function F(x) =f(z) corresponding to (1.2.9) represents a
function with branch points at x = ± 1. Pade approximants are calculated in
terms of the values of F(x) and its derivatives at x = 0 and these do not
depend on how we might choose to insert a cut between the branch points,
assuming again that w(z) has enough analyticity to allow the possibility of
different choices. In the example at hand we see that the Pade approximants,
single-valued functions, converge to a function that is single valued in the
plane cut along z E L. The poles of the Pade approximants lie on this cut. It
may be said that the Pade approximants have chosen this way of cutting the
complex plane.

Part of the conjecture consists of the generalization [33] of these results of
orthogonal polynomials/Pade approximants corresponding to functions f(z)
with a form more general than (1.4.1). We believe that for any appropriate
fez) there will be a preferred set of arcs in the complex plane S, with
connected complement, which is completely determined in terms of some of
the branch points of fez). As n -. (x), all but a bounded number of zeros of
p(z) will approach S and correspondingly [n/n] will converge in capacity to
fez) for z E S.

Of course, for a given function fez) there has to be a unique S, but the
problem of determining such an S will be laid aside (until Section 3.4) and
instead we will follow the approach of Szeg6 and consider functions f(z)
constructed from a particular preferred set S. Thus we choose a particular S
and suppose that f(z) is analytic in the complex plane cut along S, so that
we may write

fez) =f dt w(t).
s t-z

(1.4.2)

The conjecture describes the asymptotic form of polynomials p(z) associated
with thisf(z), provided the weight function w(z) satisfies certain conditions.
The principal condition is that wet), which may be complex, should not have
more than a finite number of zeros, z E S. In addition it should be
adequately smooth, as required in the Bernstein-Szeg6 theory.
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The function ?(z), defined generally in Section 3.1, plays an important role
in the discussion. In the present case, ?(z) may be defined as the complex
Green's function with pole at infinity for the complement of S, so that ?(z) is
analytic, z E I(; - S, except near z = 00, where ?(z)"'" log z + const., and
Re ?(z) = 0, z E S. The conjecture implies that the dominant part of the
asymptotic behavior of p(z) is exp(n?(z)), except near S.

A more precise statement of the asymptotic conjecture for p(z) (=P2(Z) of
Section 1.2) is

p(z) ,..., X(z),
n-<X)

zE S (1.4.3)

except near zeros of X(z). The function X(z) is analytic, z E I(; - S, except for
a pole of order n at 00. In conjunction with the function R(z), analytic,
z E I(; - S, with a zero of order (n + 1) at 00, X(z) satisfies the condition
(equivalent to (3.2.11))

w(z)x+(z) =R_(z)

w(z) X_(z) = R+(z)
zES. (1.4.4)

This is equivalent to a Hilbert problem on the two-sheeted Riemann surface
formed by joining two copies of I(; -S at S. Its solution is given in (4.3.32),
where we use (4.3.33) to relate p(z) to w(z). There is a form analogous to
(1.1.9) for the behavior of p(z), z E S, and corresponding predictions for
Pl(Z).

In the case when S = Land w(z) is real, positive, it is easy to see that the
above formulae are equivalent to the results quoted in Section 1.1.

2. ALGEBRAIC PRELIMINARIES

In this section we describe a number of algebraic properties of Hermite
Pade polynomials that will be useful in the subsequent discussion. The
section could be omitted on first reading and referred to later as required.

2.1. Relation between H-P Polynomials of Different Types

The H-P polynomials p/(p, x), Q/(p, x) were introduced in Section 1.3. Let
us choose

and

i,k= 1,...,m

i, k = 1,..., m

(2.1.1)

(2.1.2)
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where 111' i = 1,..., m, is a set of positive integers. It follows from the work of
Mahler [28], Jager [23] and Loxton and Van der Poorten [26] that if the
points p(kl, p.(kl, k = 1,..., m, as well as the point (111"'" 11m) are normal, then

(2.1.3)

where the matrices P, Q are defined by

(2.1.4)

and
m

11=:L 111'
/=1

(2.1.5)

An analogous result was known to Van Vleck [46] and earlier authors.
To begin with it may be shown [23,28] that, under the above normality

conditions, normalizations may be chosen so that

Now, with F 1(0) *- 0, we have

detP =x"

det Q= x(m-l)".
(2.1.6)

m m

F 1(x):L PI(PUJ,x) Q/JPJ,x) = :L p l(p(j),x)F/(x)Ql(u(kl,X) +O(x")
/=1 /=1

= Ql(u(kl, x) O(x") + O(x")

from (1.3.4) and then (1.3.1). Thus

m

:L p/(puJ, x) QI(u(k), x) = O(x").
1=1

(2.1. 7)

(2.1.8)

The degree of the left-hand side is at most 11- l,j *- k and 11,j = k. Thus for
j *- k (2.1.8) gives zero and for j = k, const. x". None of these constants can
be zero for then det[pTQ] = 0 in contradiction with (2.1.6). A suitable
choice of normalization gives (2.1.3).

Note that (2.1.3) implies

so that in particular

m

:L Pj(P(/), x) Ql(,u(/), x) = 0,
1=1

j=2,...,m,

(2.1.9)

(2.1.10)

a formula that is important in our construction of reproducing kernels.
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2.2. Generalized Orthogonal Polynomials

In analogy with the connection between Pade polynomials and orthogonal
polynomials described in Section 1.2, we give relations between H-P
polynomials and certain generalized orthogonal polynomials. This
connection was first discovered by Angelesco [2].

For this section and the next we suppose that FI(x) = 1 and choose
tTl = n + 1, j = 1,..., m, for use in the polynomials of Section 2.1.

Let us consider polynomials h(z), k = 2,..., m of degree n defined by

k=2,...,m. (2.2.1 )

(2.2.2)j=O,..., v- 2.

Multiplying (1.3.1) by zn+1+ I and integrating round a closed contour large
enough to include all the singularities of Fk(Z - I) leads, with
v = (m - 1)(n + 1), to

£. J dz pk(z)zFk(z-l)zl = 0,
k=2

Equation (2.2.2) could be regarded as a generalized orthogonality relation
for the "vector" polynomial {h(z)} with respect to the "vector" weight
{zFk(z-I)}.

Polynomials roughly dual to Pk(Z) may be constructed as

1=2,...,m. (2.2.3)

The degree of q(/)(z) is v-I and it satisfies the orthogonality relations

j=O,...,n-l

(2.2.4)

j= 0,... , n; k = 2,..., m, k* I.

In (2.2.4) and Section 2.3 the integration contour is as above.
The two types of H-P polynomials correspond to the two types of

generalized orthogonal polynomial that are naturally defined when several
weight functions are available. These polynomials should be distinguished
from those that can be defined in terms of a square matrix weight function, a
case not considered in this article.

The relation between Pade approximants and orthogonal polynomials has
led to a better understanding of the former, and we expect this situation to be
repeated for H-P polynomials.
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2.3. Reproducing Kernels

A kernel that has the property of reproducing the operand when applied to
polynomials of degree n played a key role in the proof of the results of
Section 1.1. The polynomials in question were orthogonal on the unit circle
but the same method was used by Nuttall and Singh [31) to study certain
polynomials orthogonal in the sense of Section 1.2. It is likely that an
appropriate reproducing kernel will be important in proving asymptotic
results for H-P polynomials. More details on this possibility will be found in
Section 6.1.

Now suppose that we choose F1(x) = 1, and take Y/j = n + 1, j = 1,..., m,
for use in the polynomials of Section 2.1. A family of reproducing kernels
Kjk(z, t) may be defined as

m

Kjk(z, t) = zn+ 1 L Pip (/) , Z-I) QI(P(/), t- I) tVFk(t-l)(t - z)-I,
1=1

j, k = 2,..., m (2.3.1 )

for each of which

f dt Kjk(z, t) ;rr(t) = 211'[ <>jk;rr(z) (2.3.2)

for any polynomial 11' of degree n.
The proof of (2.3.2) is analogous to that given by Szego [45). It stems

from relation (2.1.10). We write

;rr(t) = (;rr(t) - ;rr(z» + ;rr(z) (2.3.3)

and note that (;rr(t)-;rr(z»(t-z)-I is a polynomial of degree n-l and so
the corresponding part of (2.3.3) contributes zero to (2.3.2) because of the
orthogonality relation (2.2.4), and a corresponding relation for 1= 1. We are
left with

f dt Kjiz, t) ;rr(t) = ;rr(z) f dt Kjk(z, t)

m

= ;rr(z) L f dt QI(P(/), t- I
) tVFk(t-I) (2.3.4)

1=1

X [P/p(/),z-l)zn+I_Pj(p(/l,t-l)tn+I)(t-z)-1

using (2.1.10). Now the expression [ )(t - Z)-I is a polynomial in t of degree
n for which the coefficient of t n is -PJ(P(/),O). The lower powers of t again
contribute nothing to the integral because of (2.2.4) so that

(2.3.5)
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m

Ajk=-L: Pip(/), 0) f dtQI(P(1),t- l )tv+nFk(t-I).
1=1

(2.3.6)

Using (2.1.10) and then (1.3.4) we have

m

Ajk = L: f dt QI(P(1), t- I)Fk(t-I )[Pip(/), t- I) - pip(/), 0)] tv+n
1=1

(2.3.7)
m

= L: f dt{Qk(P(1), t- 1 ) + O(t-v-n-I)}[Pip(/), t- 1) -Pip(/), 0)] tv+n
1= 1

The term containing O(t- v
-

n
-

I
) gives zero on counting powers, and, of the

remainder, the term with pj (p(1>' 0) is zero by Cauchy's theorem. We are left
with

m

Ajk = L: f dt Qk(P(1), t- I )Pj (P(1), t- I ) tv+n
1=1

which from (2.1.9)

(2.3.8)

2.4. Multiple Integral Formula for Generalized Orthogonal Polynomials

Suppose that we are given weight functions W/(Z), i = 2,..., m, defined on a
contour r in the complex z-plane. We define generalized orthogonal
polynomials of type I, Pj(z), j = 2,..., m, of degree P-j' respectively, by the
conditions

m

L: f dz wj(z) Pj(z) Zk = 0,
j=2

k = 0,.." (P2 + ... +P- m +m - 3). (2.4.1)

(2.4.2)

Such polynomials exist but may not be unique.
In generalization of the result quoted by Szego [45] there exists an explicit

representation of piz) in the form of a multiple integral (10). It is

Pj(z) = (Pj + 1)(-1 )1t 2+ ••• +ltj_1

X 1a[tt (fr dZ~/)WI(Z~/)) ] V(z~/) ... Z~;)l
I*j

X 1VI (t dz<j)wj(z<j») I V(Zz~j) ... z~})

X ~(ZO(2) ... Z(2)Zo(3) ... z(3) ... Z(lj) ... z(J) ... z(om) ... z(ml)
1J.2 'uJ J).j 'urn
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where the Vandermonde determinant V(x 1 ... x s) is given by

i,j= 1,..., s. (2.4.3)

It is possible that (2.4.2) is identically zero, but if this is not the case (2.4.2)
furnishes a set of polynomials satisfying (2.4.1). If the set of polynomials for
the given set of degrees is unique up to a constant factor, then (2.4.2)
provides a representation.

The generalized orthogonal polynomial of type II, q(z), of degree
fJ2 + .. ,+ lim +m - 1 is defined by

t dz wiz ) q(z) Zk = 0, k = 0,... , lij;j = 2,..., m. (2.4.4)

We find

q(z) = la[tt (Jr dZ~)W/(Z~»)) ] V(z~) ... z~:)!

x V(ZZ~2) ... Z~2; ... z~m) '" z~::)

The proof proceeds along lines similar to those of [10] for (2.4.2).

2.5. Christoffers Formula

Christoffel's formula [45] tells us how to construct an orthogonal
polynomial corresponding to weight ()(z) w(z) in terms of polynomials
orthogonal with respect to weight w(z), where

/

()(z) = n (z - z/).
j=1

(2.5.1 )

If the former polynomial of degree n is denoted by q(z) and the latter by
p(n, z), we have, provided the determinant is not identically zero,

p(n, z) p(n + 1, z)

()(z)q(z)= p(n,zl) p(n+ 1,zt)

p(n, z/) p(n + 1, z/)

p(n + I, z)

p(n + I, Zt) (2.5.2)

(2.5.3)j = 1,2,3.

This result may be generalized to the case of H-P polynomials. We give
one example. Suppose m = 3 and we are given type I H-P polynomials
{Pt(P, x)} corresponding to functions F p F2' F 3' We wish to construct
polynomials {Pi(P, x)} corresponding to functions OJ(x) Fj , j = 1,2,3, where

()ix ) = r1 (x - xP»),
k=1
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'"
j = 1,2,3, (2.5.4)

where the lattice points a are

a= (000)(100) .,. (/100)(010) ... (0/20)(001) ... (00/3), (2.5.5)

It is seen that {Pj} will satisfy the appropriate equation of the form (1.3.1)
and will be a polynomial of correct degree provided that the right-hand side
of (2.5.4) vanishes at the zeros of OJ' Thus we have

L a",P/p + a, xV» = 0,
'"

k= 1,...,lj ;j= 1,2,3. (2.5.6)

Equation (2.5.6) constitutes equations for the coefficients a", that in general
may be solved to give a determinantal form for {Pj} analogous to (2.5.2).

3. CONJECTURE ON ASYMPTOTIC BEHAVIOR

The conjecture on the asymptotic behavior of Hermite-Pade polynomials
to a set of functions Fix), j = 1,..., m, is stated in terms of an appropriate
Riemann surface !If. Rather as for the Pade case, m = 2, discussed in
Section 1.4, and the special case of this, Sections 1.1, 1.2, we first choose a
Riemann surface !If with m sheets and then construct sets of functions for
which !If will be the appropriate surface, in analogy with the choice (1.4.2).
In Section 3.2 we treat one class of such sets for which the conjecture is
clearest and the analysis of its predictions easiest. An extended class of sets
of functions is discussed in Section 3.3, but a complete formulation of the
conjecture is still lacking.

Given functions {Fix)}, there should be a most one surface !If for which
the functions meet the conditions of the conjecture. Only in the case m = 2
have we made any progress in determining the appropriate !If, and these
ideas are outlined in Section 3.4.

3.1. Riemann Surface

In analogy with what might be called the Bernstein-Szego point of view
we begin with a Riemann surface !If with m sheets, each a copy of the
complex z-plane. The surface !If may be described by an equation of the
form

r(y,z)=O

where r(y, z) is an irreducible polynomial in y, z of degree m in y.

(3.1.1 )
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Below we shall specify how points on !$ are to be assigned to the various
sheets. We shall use the notation Z(k) to indicate the point on sheet k of !$
above the point z. From time to time, where the context makes the meaning
clear, we shall use z to denote a point on !$ or a point in C.

The assignment is made with the help of a function? defined on !$' It is
an Abelian integral of the third kind (42) with poles at oo(J),j= l,...,m. At
z = 00 (I), which we take to correspond to the x = 0 about which we are
expanding in (1.3.1), the residue of ? is (m - 1) and at 00 (J), j = 2,... , m, the
residue is -1. This means that

?(z) ~ -(m - 1) log z,

~(z) ~ log z, j= 2,... , m.
(3.1.2)

Elsewhere ? is analytic in the local variable. The function ? is not single
valued on Sf but around any cycle on Sf (cycles exist which are not
homotopic to zero if the genus g of Sf is greater than zero) the change in ? is
pure imaginary. According to Siegel [42] such a function is unique up to an
additive constant and Re? is single valued on Sf.

We use the value of Re? to prescribe the m sheets of Sf. The sheets are
labelled so that, for each z E C,

(3.1.3 )

We denote by S E Sf the boundary between sheets m, m - 1. This consists of
one or more non-intersecting closed curves Sj, i = 1,.... The boundary S

separates Sf into two open sets Sfm= {z(m):Re~(z{m» >Re?(z{m-l»} and
!$o =!$ - Sfm- s. We shall assume in Section 3.2, 3.3 that !$o, the first
(m - I) sheets of !$, consists of a single connected (perhaps multiply
connected) component. Perhaps this is always the case, for we know of no
counter examples. Sheet m, !$m' may have several disconnected components.
We denote by + that side of S bounding !$o, - the other side, and orient S so
that the + side is on the left.

The image of S in the complex plane we call S, so that

S = {z E C: Re ?(zlm) = Re ~(zlm-I»} (3.1.4 )

S consists of a set of analytic arcs, and the mapping s ~ S is generally 2 ~ 1.
In a similar way we introduce s' E Sf as the boundary between sheets 1, 2

of Sf and let S' E C be the image of Sf in the complex plane, so that

(3.1.5)

Examples of the function ?(z) and the sets S, Sf are discussed for various
surfaces !$ in Sections 4, 5.

640/42/4-2
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We now take the opportunity to remind the reader of a few facts about
functions on .9f that will subsequently be needed often. An excellent
reference is Siegel [42].

There are g linearly independent Abelian differentials of the first kind,
taken to be dwk , k = 1,... , g, which are integrable over every path on .9f.
Each differential has 2g independent period integrals f1kj' k = 1,..., g;
j = 1,..., 2g, obtained by integrating over each of 2g cycles on .9f that form a
basis for the fundamental group.

Meromorphic functions on .9f are rational functions of y, z. They are
meromorphic in the local variable at each point of .9f. It may be shown that
every meromorphic function has the same number of zeros as poles. Unless
g = 0, it is not possible to construct a meromorphic function with an
arbitrary set of zeros and poles. Indeed, if a l,..., av and /31'"'' /3v are the
poles, zeros of a meromorphic function, Abel's theorem states that there exist
integers n/ such that

k= 1,...,g (3.1.6)

and conversely.
Suppose that all poles, zeros, but /31' ...,/3g are chosen. Then (3.1.6) leads

to an example of the Jacobi inversion problem in which /31''''' /3g and integers
{ni} are to be found from g equations of the form

k= 1,...,g (3.1.7)

with Wk , k = 1,... , g, given. The Jacobi inversion problem always has a
solution for the set of points /3 = /31''''' /3g (called a divisor). In general, the
solution is unique but it is possible, if g > 1, that a solution /3 may be a
special divisor, in which case the solution is not unique.

To define a special divisor, assuming that /31''''' /3g are all distinct, we form
the g X g matrix with elements dwdd/3j using the local parameter at each
point. If the rank p of this matrix is less than g, then /3 is special of rank p.
There is a corresponding definition in the case when /31''''' /3g are not all
distinct.

If one solution /3 of (3.1.7) is a special divisor of rank p, then all solutions
are special of rank p. Moreover, the general solution is obtained by choosing
points /31' ... ,/3g-p arbitrarily, in which case the remaining points of /3 are
determined. The situation is of course exactly the same for the problem of
determining zeros /31"'" /3g of a meromorphic function with its other zeros
and poles given.
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3.2. Conjecture-Case 1

For what we call case 1 of the conjecture, functions Fix) =jj(z),
j = 1,... , m, must exist, which obey the following conditions.

(i) Each functionjj(z) is analytic and single-valued, z E !JRo' which is
connected.

(ii) Except perhaps for a finite number of points, each function jj(z)
must have a limitjj(z+) as z -+ s and the limit must be adequately smooth on
s.

(iii) Suppose that z(m) E s. There will be another point z(m-l) E s
corresponding to the same z E eWe define

i,j = 1,... , m, z(m) E s (3.2.1 )

where, for j = m - 1, m, fi(Z(j)+) is implied. Then we require that
D(z(m») '*°except for at most a bounded number of points z(m) E s.

We remark that analytic means analytic in the local variable on !JR, so
that, in terms of z E te, {jj(z)} might have branch points on !JRo. Analytic
could probably be changed to meromorphic with little difficulty.

In general, !JRo will not be simply connected, in which case the condition
of single valuedness means that/;(z) must not change when taken round any
cycle contained in !JRo' It could turn out that !JRo is simply connected, in
which case analyticity ensures single valuedness. We call this case la.

We begin with type I polynomials. The conjecture is less complicated if we
assume that the degree (Pj - 1) of each polynomial is the same Pj - 1 = n,
j = 1,... , m. We set

j= l,...,m (3.2.2)

so that each Pj(z) is a polynomial in z of degree n satisfying

mL piz)jj(z(l)) = O(z-(m-l)(n+l»),
j=l

z -+ 00. (3.2.3)

The conjecture asserts that the asymptotic form of piz) as n -+ 00 is given
by the solution of a boundary value problem on !JR. There are functions
Xj(z), j= 1,..., m, which are meromorphic for z E!JRm and a meromorphic
function R (z), z E !JRo which is an approximation to L:j= 1 Pj(Z) jj(z). These
functions obey

m

L jj(Z(k») xiz(m») = 0, k = 1,..., m - 1, z E S
j=l

m

L jj(z+ )xj(z-) = R(z+), z E s.
j=l

(3.2.4)

(3.2.5)
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We note that there is a 1-1 correspondence between points z E .9im and
z E C with z q; S, and sometimes we shall think of xiz) as a function of
z E C, zq; S.

We predict that, except near to zeros of xiz), z q; S,

z q; S,j = 1,..., m. (3.2.6)

The polynomial piz) will have a zero near to each zero of Xj(z), z q; S. In
addition we predict, in analogy to (1.1.9), that, for points z E S, where the
functions JJ(z+ )(z E s) are sufficiently smooth,

zE S (3.2.7)

where the subscript + means the limit from the left side of S, and a proviso
about zeros similar to above is implied.

To complete the conjecture it is necessary to give information on the
poles, zeros, and boundary behavior of {xiz)}, R (z), sufficient to make the
solution of (3.2.4), (3.2.5) unique (up to a constant factor; in future we
imply this qualification), except in cases when {piz)} are not unique or
almost so. The reader will observe that the {Xj(z)}, R(z), of any solution of
(3.2.4), (3.2.5) may be multiplied by a function meromorphic on .9i to
obtain another solution of these equations. Because of ignorance of the
correct specification of the boundary behavior on s, we do not present here a
general statement of the conditions required for uniqueness, but the problem
is solved for a number of examples in Section 4. Common to all cases,
however, supposing no point at 00 lies on s, is the requirement that each
Xj(z) has a pole of order n at 00 (m), and that R (z) has poles of order n at
00 (k), k=2,...,m-l, and a zero of order (m-l)(n+ 1) at 00(1).

The conjecture implies that the dominant factor in each piz) for large n is
exp(n¢(z(m»)). All the zeros of p/z) except at most a number independent of
n will lie near to S for large n. Asymptotically their line density will be
proportional to W(z(m») - ¢'(z(m-Il)I. Some or all of the remaining zeros
will vary in position with n, and the nature of this variation will become
apparent as the examples are studied.

The problem (3.2.4), (3.2.5) may be reduced to one of more familiar form.
For z(m) E.9imwe introduce the cofactors A;(z(m»), i = 1,..., m, of the element
!t(z(m») in the determinant of (3.2.1). Of course, with z(m) E .9im,
z(m-I) E .9io, and we see that each A;(z(m») is piecewise analytic, z(m) E .9im.
Each cofactor changes sign as we cross a curve in .9im that is the image of a
boundary between two adjacent sheets of .9i. If we introduce giz),
j = 1,..., m, a set of independent functions meromorphic on .9i, and define

i,j= 1,... , m (3.2.8)
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then each ratio Aiz)/G(z),j = 1,..., m will be single valued, meromorphic for
z E .!ifm' with poles possible only at the zeros of G(z). This follows since
G(z) changes sign whenever Aiz) does, owing to the interchange of two of
its rows.

Now the solution of (3.2.4) shows that

z E gpm (3.2.9)

Consequently there is a function x(z), meromorphic for z E gpm' such that

xiz) = x(z) Aj(z)/G(z),

The boundary condition (3.2.5) implies

j= 1,..., m, z E gpm' (3.2.10)

(D(z)/G(z-)) x(z-) = R(z+), z E s. (3.2.11)

This is the standard form of the homogeneous Hilbert problem on gp for
functions R(z), x(z) meromorphic on gpo, gpm , respectively. In Section 4 we
have shown how to use the method of Koppelman [241 to solve such
problems.

For polynomials of degree slightly different from n and functions Jj(z)
meromorphic, z E gpo, we expect that the asymptotic form will also
correspond to a solution of (3.2.4), (3.2.5).

Now we come to type II polynomials, assuming the same conditions on
the functions Jj(z). Again we restrict attention to the diagonal case and take
each Pj' j = 1,..., m, of (1.3.5) equal to n, so that a = mn and degree
Qj(p' x) = (m - 1)n, j = 1,..., m. It is often convenient to introduce
polynomials qj(z), j = 1,..., m, of degree (m - l)n

Qj(p' x) = x,m-Iln qiz ), j= l,...,m. (3.2.12)

In this case the conjecture is stated in terms of a function T(z), meromorphic
z E gpo, and a function l{I(z), meromorphic z E gpm that satisfy the boundary
condition

Now we predict

(G(z- )/D(z)) l{I(z-) = T(z+), z E s'. (3.2.13)

j = 1,..., m, z E. S' (3.2.14)
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except near zeros of the right-hand side, and qiz) will have a zero near those
points. We also predict

j = 1,..., m, z E S' (3.2.15)

except possibly near points z E S or zeros of the right-hand side.
As before, to complete the conjecture we must give enough information

about zeros and poles of IIf(Z), T(z) to make the solution of (3.2.13) unique,
and again we do not give a general statement of this information. However,
we do prescribe the following.

T(z), z E !Ro : zeros: (00 (2)y+ 1,... , (00 (m-l»n+ 1

poles: (00 (I)(m-on,

{at each branch point of !R E !Ro a pole
of order one less than the winding number}

IIf(Z),zE!Rm : zeros: (oo(m»n+l, {poles ofG(z)} (3.2.16)

poles: {zeros of G(z)}.

We see that the solution of (3.2.13) will be the inverse of the solution of
(3.2.10) multiplied by a meromorphic function with a number of zeros, poles
independent of n. The dominant factor of each qiz) for large n is
exp(-n~(z(l») away from S'. Apart from a limited number, the zeros of
q/z) will approach S' and there will have line density proportional to
If(z(l) - f(Z(2»1

3.3. Conjecture-Case 2

The' evidence of a few examples shows that there may be cases where
(3.2.4), (3.2.5) hold, even though the functions {fj(z)} have branch points in
!Ro' We do not at present have enough information to be very definite about
the form of the conjecture in this case, but, in the interest of stimulating
further investigation, we make some suggestions.

Suppose that fj(z), j= 1,..., m, have a branch point at z = v E !Ro' We
assume that v E sheet 1, although it could be that v E s', the boundary
between sheets 1, 2. We construct a cut a E !Ro' an arc running from v to a
point on s, and assume that {fj(z)} are analytic, single valued for
z E !Ro - a. The cut a must be chosen so that as we move along a from v,
the number of the sheet we are on never decreases. No doubt also a must be
a progressive path, one on which Re ~(z) does not decrease. Suppose that
v E sheet I, 1 < I <m, or that v is on the boundary of sheet I and not on the
boundary of any sheet of higher number. In addition to condition (ii) of
Section 3.2, we assume that the limits offj(z), j = 1,..., m, exist as either side
of a is approached.
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Now suppose that z(/) E a with z(/) near v. We require the functions
{.tJ(z)} to satisfy

I-I
.tJ(z(/)-) = A(Z(l») }j(z(/) +) + L AI(Z(/)) .tJ(z(i»),

1=1

j = 1,... , m. (3.3.1)

For type I polynomials obeying (3.2.3) we again conjecture that their
asymptotic form will be given by a solution of (3.2.4), (3.2.5). The functon
R(z) is meromorphic z E ~o - a. In (3.2.4), (3.2.5) we must take {.tJ(z)} to
be evaluated in R o - a as above, and (3.2.4) also holds as Z(k) ~ a from
either side. A further condition, which makes the boundary value problem
have a solution unique up to a meromorphic factor, must also be imposed:

R(z-)/R(z+) = A(Z), zEa. (3.3.2)

We expect that, if condition (iii) of Section 3.2 applies, the asymptotic form
of {piz)} will be given by (3.2.6), (3.2.7), where {Xj(z)} are the solutions of
the boundary problem just described.

We now remark on the solution of this problem. First of all the function
A(Z(/») may be written as the ratio of two determinants by solving (3.3.1). If
we let the point z = z(/)move along a to s, the points z(i), i = 1,...,1- 1, could
wen change sheets. However, none of these points will leave ~o and so A(Z)
is well defined, z E a. (We assume that a is chosen so that on no sheet is
there a point on a which is the image of v.)

In place of (3.2.8) we define G(z), piecewise analytic, z E ~m' by

fl(z(l)) fm(z(l))

fl(z(2») fm(z(2»)
(3.3.3 )

fm(z(m-I»)

gm(z(m»)

where giz), j = 1,..., m are independent analytic functions, z E ~m' Indeed,
we could replace the G(z) of Section 3.2 by such a formula. Now again
(3.2.9) holds and there will be a function X(z), meromorphic z E ~m' such
that (3.2.10) is true, with G(z) given by (3.3.3). This follows because (3.3.1)
or its continuation may be used to show that Aiz)/G(z) is single valued,
z E ~m' As before we deduce (3.2.11), still using the new definition of G(z).
We point out that D(z), z E s, has a discontinuity at the point where a joins
s, but the continuation of (3.3.1) shows that this discontinuity is consistent
with (3.3.2).

Equations (3.2.11), (3.3.2) constitute a boundary value problem which
could be solved by the methods of Muskhelishvili [29] if the genus of~ is
zero. It is likely that Koppelman's analysis [24] could be extended to treat
the case of genus > O.
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For type II polynomials the conjecture of Section 3.2 is modified in an
analogous manner. The function T(z) is now meromorphic z E.9Ro - G and it
obeys (3.2.13) with G(z) given by (3.3.3). We also require

T(z+ )/T(z-) = A(Z), z E G. (3.3.4)

With this T(z) we expect (3.2.14), (3.2.15) to hold.
The example of Section 4.7 corresponds to this case of the conjecture. It is

quite possible that there are extensions. A trivial one is to have several
branch points v. Another possibility, for which we have no examples, is the
situation in which non-trivial cycles exist on .9Ro with {.tJ(z)} consequently
not single valued, but a relation, analogous to (3.3.1), holding between the
different evaluations of {.tJ(z)} so that (3.2.4) has a unique solution.

It is also possible, as we see from the second example of Section 5.3, that
one of the functions .tJ(z) has a branch point on sheet 1. This case does not
fit in the previous discussion of this section, and again this indicates that the
conjecture might apply to {.tJ(z)} multi-valued on .9Ro obeying a condition
other than (3.3.1).

3.4. Choice ofRiemann Surface

Usually, we begin with a set of functions {.tJ(z)} and wish to obtain the
asymptotic behavior of the corresponding H-P polynomials. In order to do
this, it is necessary to determine the appropriate Riemann surface .9R to be
used in the conjecture. If the conjecture is correct, then there can be at most
one surface .9R for which the conditions of the conjecture, either case 1 or
case 2, hold. Of course, there may be functions, with natural boundaries for
instance, for which the conjecture does not apply with any choice of .9R.

In this section, we study the problem for the case m = 2, and show that
indeed the surface .9R is unique, assuming that {.tJ(z)} are such that .9R exists.
A characterization of .9R and the corresponding set S is given and infor
mation on how they are to be found is presented. We expect that the
situation for m > 2 will be similar, but so far no progress has been made on
its analysis.

With no significant loss of generality, we assume thatf,(z) = 1, in which
case the determinant D of (3.2.1) becomes

Z(2) E s. (3.4.1 )

The surface .9R must consist of two copies of the complex plane cut along S,
joined together at this curve. We may write (3.4.1) as

zES, (3.4.2)

where +, - mean the limits from opposite sides of S.
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The conditions of Section 3.2 in this case imply that/2(z) is analytic (on
sheet I) and single valued in the complex plane cut along S, so that 12(z)
must be unchanged as z follows any loop containing one or more
components of S. Such loops, not containing the whole of S, are cycles
contained in Sfo' Case la corresponds to the situation when S has but one
component. It is also required, as we see from (3.4.2), that the discontinuity
of liz) across S is not zero except perhaps at a finite number of points.

A surface Sf with two sheets and genus (I - I) may be described by an
equation of the form

with

y 2 =X(z)

21

X(z) = n (z - bj )

j=1

(3.4.3)

(3.4.4)

where bj , j = 1,...,21, are distinct, finite points in the complex plane. In [31)
we showed that the function 9(z) of Section 3.1 has the form

9(z) =r dz' Y(z')X- I/2(Z')
hi

(3.4.5)

where Y(z) is a monic polynomial of degree 1- I and X- I/2(Z) is the
meromorphic function that approaches z -I as z --+ 00 (I). The coefficients in
Y(z) are determined from the condition that all the periods of 9(z) are pure
imaginary, giving independent equations

IfhJ+' IRe I b
l

dz' Y(z')X- I/2(Z') I = 0, j = I,..., 2(/- I). (3.4.6)

It does not matter which contours are taken in these integrals. If we write
Y(z) as

I-I

Y(z) = Zl-I + L Zk-Iyk ,

k=1

then (3.4.6) becomes

I-I lfbJ+1 lL Re(nkjYk) = -2 Re dZ'(Z,)I-1 X- I
/
2(Z') ,

k=1 b l

(3.4.7)

j= 1,...,2(/-1)

(3.4.8)
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where the period matrix nkJ' made up of period of the integrals of the first
kind (in this case dWk = Zk- IX- I/ 2(Z) dz), is

j= 1,...,2(/-1);k= 1,..., /-1.

(3.4.9)

The properties of the period matrix [42] ensure that the matrix of (3.4.8) is
non-singular and that Y(z) is determined uniquely given {bj }.

In this case we have Re 9l(z(l» =-Re 9l(Z(2» so that 8 = {z E C:
Re 9l(z) = OJ. Some information about the set 8 was given in [31}. It consists
of a number of analytic arcs ending at the points {bj }. If a zero of Y(z) of
multiplicity q coincides with bk , then 2q + 1 arcs and at bk , but if the zero
belongs to 8 and is not coincident with any bj , j = 1,...,2/, then q + 1 arcs
intersect at the zero. The set 8 consists of one or more components. In the
complement of 8, which is connected, Re 9l(z) is single valued.

Let us suppose that b l , ..., btl are the only points in {bj } that do not
coincide with a zero of Y(z), and call these points the ends of 8. In the
vicinity of one of the ends, the function f2(Z) is analytic apart from a cut
running from the end along the arc of 8. The discontinuity of f2(Z) across
this cut is non-zero except perhaps at a finite number of points. Stretching
the meaning of the term, we can say then that this end is a branch point of
f2(Z).

Thus, given f2(Z), to determine the appropriate 8, and hence immediately
9l(z) and !if, we choose a subset of the branch points of f2(Z) to be the ends
of 8. We group the ends into subsets, each to be contained in the same
components of 8. As we have shown [36], there is a unique set 8
corresponding to these requirements, which may described as the set of
minimum capacity containing in its components the ends grouped as
specified. We now test to see whether the set 8 constructed in this way
meets the requirements of the conjecture that the discontinuity of f2(Z) is not
zero (except for a few points) across each arc of 8 and that it is single
valued in the complement of 8.

We now show that, no matter how the ends are chosen from the branch
points of f2(Z) and how they are then grouped into subsets, there can be at
most one set 8 satisfying the conditions of the conjecture for givenf2(z). We
use the method of Grotzsch [18] repeated in [36] for the multi-component
case. Suppose that 8 1 is a set 8 for the functionf2(z). Then it corresponds to
a 9l(z) of the form described above. The loci 1m 9l(z) = const. are non
intersecting analytic arcs each running from a point on 8 1 to 00. Arcs
leaving 8 1 from opposite sides may be paired to form a single arc, which we
call a curve, running from 00 to 00 and intersecting 8 1 once. For 8 2 , another
possible set 8 for f2(Z), we construct a similar set of curves.
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We discuss two possibilities.

(i) For at least one set, say S!, there is a curve of S! that does not
intersect S 2' or

(ii) All the curves of S! intersect S 2 and vice versa.

The first possibility can be ruled out since there must be a continuum of
curves of S! near to the given curve that do not intersect S 2' Because S 2 is a
possible set S the change infiz) as we follow one of these curves from 00 to
00 must be zero, but, since the curves cross S!, this cannot be so, a
contradiction. If the second possibility were to hold, the argument of
Gr6tzsch [18] would show that the capacity of S 2 was greater than the
capacity of S!, and vice versa, also a contradiction. In this way the
uniqueness of S is demonstrated.

4. RIGOROUS RESULTS

In a number of special cases, rigorous results on the asymptotic behavior
of Hermite-Pade polynomials have been obtained. The conjecture has been
designed to fit all these results. This section contains a summary of many of
the rigorous results, including new work, for which more details are given.
For ease of exposition we usually restrict the discussion to the diagonal case,
but many of the results could be extended to the near-diagonal case with
little difficulty.

4.1. Meromorphic Functions-Type I Polynomials

A case of basic interest is that in which we are given a Riemann surface
S¥ with m sheets as in Section 3.1, and a set of functions Ji(z), i = 1,..., m,
which are meromorphic on S¥, with poles restricted to .5¥m. This means to
say that each functionJi(z) is a rational function of y, z, which are related by
(3.1.1 ).

A sheet structure is introduced on S¥ as in Section 3.1. We assume that
each Ji(z) is analytic in the neighborhood of 00(1), the point of expansion
(assumed not to be a branch point of &), and that D(z) given by (3.2.1) (in
this case defined for all z E S¥m) is not identically zero. For simplicity, we
also assume that no 00 (j), j = 2,.., m, is a branch point of S¥. It follows that
the set of functions Ji(z) satisfies the conditions (i)--(iii) of Section 3.2.

The case of type I polynomials was first treated by Nuttall [34] and this
section extends the previous results. The H-P polynomials defined in Section
3.2 by (3.2.3) may not be unique, but for any possible set of degree n we set

m

I Jj(z) piz) = R(z)
j=!

(4.1.1 )
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R(z) = O(Z-(m-l)(n+l) near z = 00 (I). (4.1.2)

We suppose that the poles of all h(z) are contained in the set of finite
points aj,j = 1,..., A., aj E ~m' so that R(z) is meromorphic on ~ with poles
possible only at {aj} and 00 (k), k = 2,..., m, the latter poles being of order n.

Now in (34) it was shown that meromorphic functions Hi(z) exist such
that

m

L h(Z(k» HJCz(}» = Okj,
i=l

j, k= 1,...,m (4.1.3 )

so that we can write (4.1.1) for z = Z(k), k = 1,... , m, solve, and obtain

We have set

m

Pj(z) = L iiz(k»,
k=l

j= 1,...,m. (4.1.4)

(4.1.5)

so that iJCz) is meromorphic, z E ~.

For a meromorphic function such as R(z) the number of zeros equals the
number of poles [42], so that in addition to a zero of order (m - 1)(n + 1) at
00 (I), there must be other zeros cj ' j = 1,... , A. - m + 1. We set cj = 00 (I),

j = A. - m + 2,..., A.. It was shown in [34] that R(z) could be written in the
form (up to a constant factor)

where

R(z) = '(z) exp(n~(z» (4.1.6)

(4.1.7)

and ~(z) is the function of Section 3.1, which may be written explicitly as

m

~(z) = L E(oo(l), oo(}); z).
j=2

(4.1.8)

We have used the unique differential dE(zl' zz) of the third kind, whose
singularities are simple poles at z I' zz with residues 1, -1, respectively, such
that the periods of the integral E(zl'zz;z) are pure imaginary [42]. The
function exp(E(z"zz;z) has a zero at z=z" and a pole at Z=Zz'
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We now present a theorem about the asymptotic behavior ofPj(z), a result
which agrees with the conjecture of Section 3. For this purpose, we restrict
attention to the general case, described in the following.

In general, the branch points of .9R, that is solutions of

r(y, z) = 0

or
oy (y,z)=O

(4.1.9)

will be square root branch points. We assume the surface is such that all
branch points are of square root type, so that no value of z E C exists for
which (4.1.9) has a root y of third of higher order. We also assume that all
the poles of {Jj(z)} are simple and that D(z) = det(Jj(z(k»)), z E .9Rm, has a
simple pole at each point aj , j = 1,... , A.

Now it is seen that D 2(z) is analytic, z E C, except for second-order poles
at the image of each aj , j = 1,..., A. This function has zeros, assumed simple,
at the image of every branch point of .9R. The number of branch points is
v = 2(g +m - 1) (Siegel [41 D, where g is the genus of .9R so that D(z) has
an additional [A - (g + m) + 1) + I] zeros. We shall assume that the images
of these zeros are all finite and do not lie on S. We let cj E .9Rm,j=g + 1,... ,
A- m + I, be the additional zeros of D(z), with images assumed to be
distinct from those of the branch points. The function Hiz(m») is the ratio of
a cofactor to D(z), and we assume that for i, i = g + 1,..., A- m + 1, at least
one of Hiz(m»), j = 1,..., m, has a pole at c i • Finally, we assume that no
branch point has an image lying on S, which implies m> 2.

With these assumptions, the theorem may be stated as

THEOREM 4.1. Let the points cj E.9R, j = 1,..., g, depending on n, be
chosen so that a meromophic function R(z) exists with the following zeros,
poles.

R(z): • ( (I»)(m-l)(n+l)zeros. 00 , cg +l'""c.A-m+l' cl'...,cg
(4.1.10)

I . ( (2»)n ( (m»)npoes. 00 ,••• , 00 , a1,...,a.A'

Suppose that the divisor C1 ••• cg is not within a given small distance (using a
topology provided by the local variable on .9R) ofany special divisor and that
no Ci , i= I,...,g, is near to 00(1). Then, for sufficiently large n, the point
Pi = n + I, j = I,..., m, is normal (see Section 1.3) so that the polynomials
piz) are unique, and, subject to the remark below,

p (z) - X (z(m»),
j n-+oo i j = I,..., m, z fE S (4.1.11)
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where the function xiz), analytic for z E !Jim except for a pole of order n at
z = 00 (m), is given by

(4.1.12)

with

(4.1.13)

Near to any ck , k = 1,... , g for which ck E !Jim' (4.1.11) does not hold. For
such points xick) = O,j = 1,..., m, and piz) will have a nearby zero. We also
have

p (z) ~ X (z(m)) +X (z(m-l»),
j n .... oo j j

except near zeros of the right-hand side.

j= 1,...,m,zES (4.1.14)

Proof A proof may be constructed based on the following points.

1. For z E S, Re;(z(m)) > Re;(z(m-l») so that

exp(n;(z(m»)) ~ exp(n;(z(m-Il)) as n --+ 00, zES. (4.1.15)

2. At least one of iiz(m»), j = 1,... , m, will have a pole at z(m) = ck'
k = g + 1,... , A. - m + 1, but because the sum (4.1.4) must be analytic,
(4.1.15) implies that a zero of R(z) must lie close to each such Ck' Thus, say,

Ck~Ck' k=g+ 1,... ,A.-m+ 1. (4.1.16)

3. From the definition (4.1.10) we see that the meromorphic function
R(z)/R(z) has zeros, poles as follows

Thus from (3.1.6)

R(z)jR(z): zeros: c p ... , C.\_m+ 1

poles: c1"",C.\_m+l'
(4.1.17)

k=1,...,g. (4.1.18)

From (4.1.16) the right-hand side of (4.1.18) may be made to approach zero
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for each k, from which it follows [42], with the help of the assumption about
the divisor cI ••• cg , that, for large n

(4.1.19)

(4.1.20)

The theorem follows.
We expect that an analogous theorem will hold when the restrictions on

gp and the meromorphic functions {Jj(z)} are removed.
Now let us consider how the asymptotic behavior given in this theorem

relates to the conjecture of Section 3.2. Clearly the meromorphic functions
Xj(z), z E gpm' and R(z), z E gpo, satisfy Eqs. (3.2.4), (3.2.5). We shall now
illustrate the general method of solving the equations of the conjecture. In
this case, to make the conjecture complete, we specify that the functions
R(z), xiz) must have zeros, poles as follows.

Xj(z), z E gpm: poles: (oo(m»)n

R(z), z E gpo: zeros: (oo(I))(m-J)(n+ 1)

poles: (00 (2)t,,,., (oo(m-I)t.

The functions have no other poles and have limits on s which are smooth,
but they may have other zeros.

Now we follow the procedure of Section 3.2. to solve (3.2.4), (3.2.5), and
introduce the determinant G(z) with properties similar to those of D(z). Thus
G 2(z) will have zeros, which we assume to be simple, at the image of each
branch point of gpo In addition G(z) will have zeros, poles at YI'"'' Yv and
aI''''' a'l' respectively, and we assume that none of these points lies on S.

Our aim is to solve (3.2.11), where R(z) has zeros, poles in gpo as in
(4.1.20), and, from (3.2.10), X(z) is meromorphic z E gpm with zeros, poles
prescribed as

X(z), z E gpm: zeros: y~m>,,,., y;m)

poles: (00 (m»)n, a~m),,,., a~m)

The method of Koppelman [241 requires the index K defined by

1
K = 2n [arg(D(z)/G(z))]s'

We note that D(z)/G(z) is meromorphic for z E gpm so that

(4.1.21)

(4.1.22)

K = (No. of poles of D(z) E gpm) - (No. of zeros of D(z) E gpm)

+ (No. of zeros of G(z) E gpm) - (No. of poles of G(z) E gpm)
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i.e.,
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Ie = g +m - 1 + v - 11. (4.1.23)

Now Koppelman describes how to construct a meromorphic function J(z),
z E Sf"o' such that

[arg J(z+) ]SI = -[arg(D(z )/G(Z))]SI' each i. (4.1.24)

The function J(z) has no poles, zeros, for z E Sf"o except for a pole of order Ie

at a chosen point Zo E Sf"o (a zero if Ie <0). If we introduce !1(z),
meromorphic for z E Sf" - s, by

then

where

!1(z) = X(z),

!1(z) = R(z)J(z),

!1(z+) = p(z) !1(z-), zEs

(4.1.25)

(4.1.26)

so that

p(z) = (D(z)/G(z))J(z+), zEs (4.1.27)

The equation

[arg p(z)]s = 0,
t

each i. (4.1.28)

log !1(z+) -log !1(z-) = log p(z) (4.1.29)

deduced from (4.1.26), is solved with the help of a kernel K(t, z) defined by
Koppelman [24]. Indeed, the function

1 f oK(t, z)
(},(z)=-2' dt 0 logp(t)

1Cl S t
(4.1.30)

is meromorphic, z E Sf" - s, with poles at chosen points Zj' j = 1,..., g, and
has discontinuity logp(z) across s. We add (}2(Z), an integral of the second
kind (Siegel [42D, to (), (z) to cancel the poles, but the periods of Biz) will
not in general vanish.

To proceed, we use a lemma, almost identical to one given by Koppelman,
and easily proved with the help of results in his paper.

LEMMA 4.2. For k >g, given any aj , j = 1,... , k, and flj' j = g + 1,..., k,
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on !li, it is possible to find /3j E !li, j = 1,..., g, and an integral of the first
kind w(z) such that the periods of

k

°3(Z) = L E(jJj'uj;z)+w(z)
j=1

(4.1.31 )

are any prescribed values.

Now in the case at hand (we are still using the assumptions above Th. 4.1)
zeros and poles of n(z) must occur as follows

n(z), z E !li - s: zeros: (00 (l»(m - l)(n + 1), y~ml,••• , y~m)

poles: (00 (2»n, ... , (oo(m»n, u~m),... , a~m), (zo)".
(4.1.32)

It follows that the number of poles listed in (4.1.32) exceeds the number of
zeros by g, and we use the listed poles and zeros plus g additional points
/3j E!li, j = 1,... , g, to construct 03(Z) with periods that cancel those of Oz(z).
The result is the solution

(4.1.33 )

which the construction shows to be unique unless the points /31''''' /3g

correspond to a special divisor.
Now of course in this case the function R(z), z E !lio' obtained by this

procedure may be extended to a function meromorphic for z E!li, namely
the function specified by (4.1.10). It is seen that /31 ... /3g = c1 ... cg. By
solving the equations of the conjecture, with appropriate specifications of
zeros, poles, we are able to predict that a point Pj = n + 1, j = 1,..., m is
normal for large enough n by checking that the divisor /31 ... /3g is not close
to special and has no point near 00 (I). If this holds, we can predict the
asymptotic behavior of the polynomials {piz)}.

It is our expectation that the same situation applies for a wider class of
functions {Jj(z)}. If these functions are analytic for z E!lio and have
sufficiently smooth limiting values as z --+ s, with D(z) *0, z E s, then the
method of solving the conjecture may be used word for word. We predict
that the results about normality and asymptotic behavior will be the same.

4.2. Meromorphic Functions-Type II Polynomials

With the notation (3.2.12) of Section 3.2 the equations defining type II
polynomials may, in the diagonal case, be written

i,j = 1,..., m (4.2.1)

where the polynomials {qiz)} are of degree (m - 1)n.

640/42/4-3
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We continue to assume that {}j(z)} are meromorphic and satisfy the
conditions of Theorem 4.1. For a given z E C we define Tk(z) as the solution
of

j= 1,...,m. (4.2.2)

With the help of (4.1.3) we find

m

Tk(z) = L Hiz(k») qiz )
j=1

so that we have

where the meromorphic function T(z), z E !JI, is given by

m

T(z) = L Hj(z) %(z).
j=1

Now, substituting in (4.2.1) we find that, as z ~ 00,

m
L lft(z(l») }j(Z(k») - }j(z(l») ft(Z(k»)1T(Z(k») = O(z -In + I»),
k=2

(4.2.3)

(4.2.4)

(4.2.5)

j=2,...,m.

i,j = 1,..., m. (4.2.6)

With the assumption fl(oo (I») *0, take (4.2.6) with i = 1 to give

fl(Z(I») !}j(z(l») To + k~2 }j(Z(k») T(Z(k»)! = O(z-(n+l)),

(4.2.7)

We have defined To by

m

fl(z(l)) To + L fl(Z(k») T(Z(k») = o.
k=2

(4.2.8)

The determinant of the matrix of Eqs. (4.2.7), (4.2.8) for To, T(Z(k»),
k = 2,..., m, is (f1(Z(I)))m-1 D(z). By assumption this is non-zero at 00, so
that (4.2.6) implies, as z ~ 00,

k=2,...,m. (4.2.9)

From this property and (4.2.5) we see that T(z) must have the following
zeros and poles on !JI.
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(4.2.10)

poles: (oo(I)(m-l)n, {cY>, k = 1,..., m; j = g + 1,..., A- m + I}, bp ... , bv '

By Cjkl we mean the image on sheet k of cj E !JRm corresponding to zeros of
D(z). The points bj E !JRo,j = 1,... , v, are the branch points of !JR. We remark
that a simple pole at a branch point is not inconsistent with (4.2.2), which is
equivalent to

m
qiz) = I !j(Z(kl) T(Z(kl),

k~1

(4.2.11)

for the singular contributes from two terms in the sum will cancel.
Remembering that v = 2(g + m - 1), we see that there must be an

additional [(m - 1)(A - (g + m) + 1) +g] zeros in T(z). We follow a
procedure similar to that of Section 4.1 and obtain an expression for T(z)
containing the factor exp(-n¢(z)), which, for large n, is largest on sheet 1,
smallest on sheet m. Because the residues of poles at Cjkl, k = 1,..., m, must
cancel in (4.2.11), we deduce, as before, that, for large n, zeros of T(z) must
occur near cjkl, k = 1,... , m - l;j = g + 1,..., A - m + 1. As a result, we have
the following theorem, analogous to Theorem 4.1.

THEOREM 4.3. Make the same assumptions as are requiredfor Theorem
4.1. Let the points tj E !JR, j = 1,... , g, depending on n, be chosen so that a
meromorphic function T(z) exists with the following zeros, poles.

T(z): ( (Zl)n+1 ( (ml)n+1 t tzeros: 00 ,... , 00 ,al,·.. ,a-A' I"'" g

(4.2.12)
l « Il)(m-Iln b bpo es: 00 , cg +l>'''' c-A-m+l> I'"'' v

Suppose that the divisor t l ... tg is not near to any special divisor and no ti ,

i = 1, , g is near to 00 (I). Then for sufficiently large n, the point Pj = n,
j = 1, , m, is normal so that the polynomials qj(z) are unique and
x(m-l)nql(z) oF 0 at x = O. The asymptotic behavior is given by

j= 1,... ,m, z E S' (4.2.13)

except near to a zero of the right-hand side, near which point qiz) will be
zero. We also have

j= 1,... , m, z E S'. (4.2.14)

To obtain a function l{I(z) that, together with T(z), Z E !JRo, satisfies
(3.2.13) of the conjecture, we define

l{I(z) = (G(z)/D(z» T(z), z E !JRm • (4.2.15)
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(4.3.1)z E.9Io

In this case, all the branch points have winding number 2 and lie in .910 ' It is
possible to follow the procedure of Koppelman explained in Section 4.1 to
see that the specification (3.2.16) leads uniquely to the above solution for the
equation of the conjecture, in the case when the divisor t I ... tg is not special.
The situation about predicting normality is similar to that described in
Section 4.1. Again, we expect the results to apply to a wider class of {./j(z)}.

4.3. Special Cases ofMeromorphic Functions

This section studies the construction and asymptotics of H-P polynomials
for meromorphic functions in a number of special cases. We begin with
m = 2, in which case all branch points are of square root type and lie on s,
and the two types of polynomial are essentially the same. The Akhiezer
polynomials are treated first followed by the important special cases of
Bernstein-Szego and Jacobi-Dumas polynomials. In Section 4.3.4 we
discuss the construction of helpful examples when m > 2.

4.3.1. Akhiezer Polynomials. Akhiezer [1] discovered a set of
polynomials orthogonal when integrated along the real axis with a particular
weight function that was non-zero for I disjoint intervals. Later, unaware of
this work, Nuttall and Singh [31] used the same idea but considered complex
branch points and saw how the results pointed to the general structure
described in this article.

We take m = 2 and consider the surface .91 given by (3.4.3) with the
corresponding ~(z) and S described in Section 3.4. Akhiezer [1] studied the
case when all bj are real, say bl <bz ... <bu. The set S is then the line
segments [bl' b)+ I]' j = 1,3,... ,21- 1, and a zero of Y(z) lies in each gap
between these segments.

Now to proceed we choosefl(z) = 1 and set (with + meaning the left side
of S)

fz(z) = const. + (2ni)-1 f dz X-;.I/\Z(l») p(z)(z - Z)-I,
S

where
.A

p(z) = n (z - aj)-I,
j=1

(4.3.2)

Thusfz(z) is meromorphic for z E.9I with simple poles at z = bj,j = 1,... ,2/,
and z= aj2>, j = 1,... , A.. We see that in this case

z(Z) E s, (4.3.3)

so that D(z(2») has a meromorphic extension, z E .91,

D(z) = X- I/2(z) p(z). (4.3.4)
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(4.3.5)

Using (4.3.3), we find that the meromorphic function R(z) defined by
(4.1.1) may be written on sheet 2 as

R(z(Z) = PI(Z) +!z(z(Z»pz(z)

=PI (z) +!z(z(l» pz(z) +X- I/Z(z(2» p(z) pz(z)

= R(z(l» +X- I/2(z(2» p(z) pz(z).

Thus R(z) has zeros and poles, supposing n ~ A+ t,

R(z): zeros: (00 (I))" + 1

poles: (00 (2))"-A-I, a~Z),... ,aiZ), bl'...,b21 .
(4.3.6)

There are therefore additional zeros cj E gp, j = 1,..., t- 1 of R(z). Since the
genus of gp is t- 1, these points are determined uniquely unless they
correspond to a speial divisor.

Having R(z), we follow the procedure of Section 4.1 to obtain piz) as

j= 1,2 (4.3.7)

with xiz) given by (4.1.6). This gives

Xz(z) = n-\z)R(z)

= XI/Z(z) P-I(Z) R(z)

so that Xz(z) has zeros, poles

(4.3.8)

(4.3.9)
poles: (00 (Z»)".

In [31] it was shown directly that such a Xz(z) led to pz(z) that satisfied the
appropriate orthogonality conditions.

We also find that

XI(Z(l» = -!z(z(Z» Xz(z(l)

XI(Z(Z» = -!z(z(l» Xz(z(Z»

so that XI (z) has

zeros '. (oo(l»n+I-A-l c- c-
, I'"'' 1-1

plus some additional zeros.

(4.3.10)

(4.3.11)
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Thus, for z rt:. S, iiz(2», j = 1,2, have no poles except at 00(2), and it is
easy to apply the methods of Section 4.1 to obtain:

THEOREM 4.4. With fiz) given by (4.3.1), the asymptotic behavior of
polynomials PI(Z), P2(Z) of degree n satisfying

is

as n --.. 00 (4.3.12)

p (z) '" i·(Z(2»,
j n-+oo J

j= 1,2, z rt:. S (4.3.13)

except near zeros of iiz(2», near to which piz) will be zero. For z rt:. S the
exact form (4.3.7) applies.

We see that this theorem holds whether or not ci ... C1_ I is a special
divisor. Should the divisor be special, the polynomials are not unique but the
behavior of all possible sets is given.

Now we wish to show how the asymptotic form iiz), which, with R(z)
from (4.3.6), obey Eqs. (3.2.4), (3.2.5), can be derived uniquely (usually)
from the conjecture. As before the equations of the conjecture lead to
(3.2.11), and in this case, since each Aiz) is single valued for z E !Jf2 , we
may choose G(z) = 1. Since A 2(z)= 1, we have x(z)=xiz) so that the
specification of the poles of X(z), z E !Jf2 , is

(4.3.14)

We see from (4.3.6) that R(z)=R(z) has poles at the branch points
b l , ... , b2l , which lie on S. To obtain a problem to which Koppelman's
method applies, we introduce R *(z) = X I/2(Z) R(z) and require from (4.3.6)
zeros, poles, z E !Jfo as follows

R*(z): z E !Jfo: zeros: (oo(l)n+l-l

poles: none
(4.3.15)

As we shall see, the requirements (4.3.14), (4.3.15) along with the boundary
condition

i.e.,
(X I/2(Z) D(z» X(z-) = R *(z+),

p(z) X(z-) = R *(z+);

zEs

zEs
(4.3.16)

constitute a well-posed problem with a solution that is usually unique.
This problem could be solved by the general method of Koppelman, but,

because m = 2, it can be reduced to a problem in the complex plane that can
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be treated by the techniques of Muskhelishvili [29]. An explicit solution was
given in [31], and, because of its importance in connection with the
asymptotic behavior in the general Pade case, we sketch a derivation here.

Both ~o and ~2 are copies of the complex plane cut along S and for the
rest of Section 4.3.1 we shall use R*(z), z E C - S, to denote R*(z(l), and
similarly X(z), z E C - S, to denote X(z(2». Thus (4.3.16) becomes

p(z)x+(z) =R~(z)

p(z) X_(z) = R Hz)

Cross-multiplying gives

x +(z) R !(z) = X_(z) R ~(z),

zES.

zES

(4.3.17)

(4.3.18)

so that X(z)R*(z) must be a polynomial of degree (I-I) from (4.3.14),
(4.3.15). We write

I-I

X(z) R*(z) = n (z - aj ),
j=1

(4.3.19)

and for simplicity of argument assume that no a j E S. Zeros of the right
hand side can occur if and only if one of the factors X(z), R*(z) has a zero.
We suppose that aj,j = 1,..., v are zeros of X(z) and aj,j = v+ 1,...,1- 1, are
zeros of R*(z).

If we set

(4.3.20)

then ~(z) is analytic and non-zero, z E C - S, but has a pole of order n - v
at z=b l • From (4.3.17) and (4.3.19) we find

~+(z) C(z) = p-I(Z) (D (z - aj)-I) (XC (z - aj») (z - bl )-2(n-v),

zES. (4.3.21)

Thus

X~I/2(Z(I) log ~+(z) - X=I/2(Z(l» log C(z)

=X~I/2(z(I)log (right-hand side of (4.3.21» (4.3.22)

Using the Plemelj formula [29], and allowing for the multi-valued nature of
the log function, we find [31]

(4.3.23)
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'II(z) = - (2ni) -I t dt (t - z) -I X:;: 1/2(t(l) 1log p(t) +jtl log(t - a)

- j~~~ I log(t - aj ) + 2(n - v) log(t - b l )!
2(/ -I)

L l1j f dt (t - Z)-I X:;:I/2(t(l). (4.3.24)
j=1 Lj

Here L j is an arc, not intersecting S, running from b l to bj+ I' and '1j is
integer. This will be a solution provided 'II(z) ~ Z-I as z ~ 00, which leads
after a little manipulation to the conditions

v a(Z) I-I a(1)

L f j dWk + L f j dWk = - (ni) -I f dz X:;: 1/2(Z(I) Zk-I log p(z)
j=1 oo(l) j=v+1 00(1) S

b
l

2(/-1)

- 2n f dWk + L l1j Dkj ,
00(1) j= I

k = 1,...,1- 1. (4.3.25)

In the first set of integrals on the left the contour must cross S once only
near b l , and in the second set on the left the contour must not cross S.

The solution for X(z) is obtained from (4.3.20) and (4.3.23),

X(z) = (z - bl )'1- V (tl (z - aj») exp[XI/2(z(l) 'II(z)]. (4.3.26)

Now it is of course clear from the identification of the zeros of X(z), R *(z)
that the two divisors a~2) ;..., a~2), a~lll ,..., al~\ and c1"'" CI _ I are the same.
Indeed, if the expression (4.3.2) for p(z) is substituted into (4.3.26), this
equation becomes (3.1.6) relating the zeros and poles of the meromorphic
function X2 of (4.3.8).

In the derivation of (4.3.26) we have not used the fact that p -I (z) is a
polynomial, so that the conjecture predicts (4.3.26) as the asymptotic form
of X2(Z) for a wider class of functions using this Riemann surface in terms of
p(z),

zE S (4.3.27)

We can make the same remarks about the prediction of normality as at
the end of Section 4.1.

4.3.2. Bernstein-Szeg6 Polynomials. These polynomials, a special case
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of Akhiezer polynomials, were used in the proof of the results described in
Section 1.1. We take 1= 1 and Riemann surface

(4.3.28)

with branch points at z = ± 1. The genus is zero and there is no need for any
points cj in (4.3.5), etc. In this case S becomes L, the line segment joining
±1.

Szego gives an explicit form for iiz) by mapping gp onto the complex t
plane through

We take
gpo = sheet 1 = {t E C: It I< I}

gp2 = sheet 2 = {t E C: It I > I}

s={tEC:ltl=l}

and it is easily checked that

(4.3.29)

(4.3.30)

(4.3.31)

for this function has a zero at 00 (I) and a pole at 00 (2) as required. For each
aj E C there exists a unique Pj with IPjl > 1 such that

It I> 1

and we have the correspondence

a\I). p:-I
J • J

a\2).p.
J • J"

From the description (4.3.8) we see that i2(Z) may be written

where

A

h(t) = n [2Pj ] -1(2 (t - pj )].

j=1

The asymptotic forms of Pj(z) for z E S (unique for n ;;;d) are

PI(Z) '" -f(z(l)tnh(t- 1
)

n-+CX) 2

(4.3.32)

(4.3.33)

(4.3.34)

(4.3.35)

(4.3.36)
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where in this case
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liz) = const. + (2ni) -I r di (i2- 1) -1/2 p(i)(i - z) -I,

-I
zE~o

(4.3.37)

with p(z) given by (4.3.2).
We note that (4.3.20) and (4.3.21) may be combined to give in the present

case

X2+(Z)X2_(Z) =p-I(Z),

since, if (4.3.34) holds for X2+ (z) then

X2_(Z) = t-nh(t)

and it may be seen that

zES (4.3.38)

(4.3.39)

(4.3.40)

The equivalent of (4.3.23), (4.3.24) is

h(t- I ) = exp !-(2ni)-1 (z2_1)1/2 (I dZI(Z'_Z)-1 (ZI2-1)-1/2l0gp(Z')!

(4.3.41)

a formula that may be checked directly by changing from z' to t ' via
(4.3.29).

4.3.3. Jacobi-Dumas Polynomials. Jacobi [22] began and Dumas [14]
completed the explicit calculation of the continued fraction and diagonal
Pade approximants to the square root of a quartic polynomial and a closely
related function. The significance of Dumas' result was overlooked for about
65 years. A similar function appears if we study the Akhiezer polynomial for
1= 2, A. = O. In this section we explain how to do the equivalent of Dumas'
calculation in this case.

With 1= 2, the polynomial X(z) of (3.4.4) is of fourth degree and the
genus of~ is 1. The only integral of the first kind is the elliptic integral (see
Siegel [41, 42])

u =rdz' X- I /2(z').
b1

(4.3.42)

We can map ~ onto the complex u-plane with (4.3.47). In this way the u
plane consists of many copies of ~, as all points of the form u = 2mw +



DIAGONAL HERMITE-PADE POLYNOMIALS 339

2m'w', m, m' integer, correspond to the same point in !JR. By w, w' we mean
the half periods of (4.3.42),

Let us define v by

f
b 3

W' = dz' X- I
/
2(Z').

b 2

v = foo dz' X- I/2(Z').
b l

(4.3.43)

(4.3.44)

(4.3.45)

Then the points z E!JR = 00(1), 00(2), hi' h2 , h3 , h4 correspond to u = v, -v,
0, w, w +w', w', respectively.

In this case i2(Z) has

iz(z): zeros: (OO(l)y-l, cl

poles: (00 (2))n.
(4.3.46)

(4.3.49)

Abel's theorem (3.1.6) shows that, for these points to be the poles and zeros
of a meromorphic function, the sum of the u-values corresponding to the
zeros must equal the sum for the poles, up to integer multiples of the periods.
Thus, if

tYn = dz' X- I/2(Z') (4.3.47)
b j

then

Yn+(n-I)v=-nv

so that

Yn = -(2n - I)v (4.3.48)

is one value of u that corresponds to Cl' Because the genus is I, cl is always
unique, as are the polynomials PI(Z), P2(Z).

We may now construct iz(z) in terms of the Weierstrass function a(u), an
entire function with zero only at the origin and points shifted from there by
multiples of the periods. It satisfies [44]

a(u + 2Mw + 2Nw')

= (_I)M+N+MN a(u)exp[(u +Mw +Nw')(2M" + 2N,,')]
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r, = (W), r,' = (W') (4.3.50)

( being the Weierstrass (-function [44]. We have

- (z) = o(u - YII)[O(U - V)]"-1
X2 [o(U+V)]"

(4.3.51)

for this function is doubly periodic (from (4.3.49» and has zeros, poles at
the appropriate places.

Following Dumas [14] we set

where, with v = pw +p'w', p, p' real,

O(U - v)
k(u)= ( ) exp[u(2pr, + 2p'r,')].

ou+v

It may be shown, with the help of (4.3.49), that

k(u) = exp[~(z)]

(4.3.52)

(4.3.53)

(4.3.54)

with ~(z) given by (3.4.5), and that Ihll(u)1 is bounded.
Points on sheet 2, 9R2 , correspond to those U for which Ik(u)1 > 1. The

corresponding point on sheet I, 9Ro, is obtained from -u, and in the u-plane
the curve s corresponds to Ik(u)1 = I, called E by Dumas [14]. In the z-plane
the equivalent set S consists of two analytic arcs ending at the branch points
bj,j= 1,...,4.

The polynomial P2(Z) is given exactly by

(4.4.55)

We can see from this explicit form the already known fact that

(4.3.56)

where U is chosen so that Ik(u)1 > 1. If YII corresponds to c1E 9R2 then iiz)
will be zero at c1 and P2(Z) will be zero near c1 • From (1.2.10) the error in
the [n/n] Pade approximant will be small, z e s, except near to c1 if
c1 E 9R2 •

The variation of c1 E 9R with n will appear irregular if v is incommen-
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surate with w, w', although in the u-plane the corresponding point Yn is
linear in n. We may solve (4.3.47) to obtain the explicit form

(4.3.57)

With the help of the form of piz) it is possible to work out the coef
ficients in the three-term recurrence relation connecting polynomials of
adjacent degrees, which were first given by Jacobi [22].

4.3.4. Examples with m > 2. Let us return to the situation of Section 4.1
but remove the restrictions on the surface .9R. If we suppose that
A= m - 1 +g, then R(z) is easy to construct, for the additional zeros {cj }

are g in number and may be obtained as described in Section 3.1. The type I
polynomials follow immediately.

For example [35], let us take m = 3 and choose .9R to be

.9R: zy3 = z - 1. (4.3.58)

(4.3.59)

This surface, of genus 0, has branch points at z = 0, 1. Because g = 0,
exp(~(z)) is meromorphic with

exp(~(z)): zeros: (00(1))2

so that

exp(~(z))= z(1 _ y)3. (4.3.60)

The boundaries of adjacent sheets chosen according to the prescription of
Section 3.1 all correspond to real z. They are

S' = {boundary between sheets 1,2} = {z: 0 ~ z ~ 1}
(4.3.61)

S = {boundary between sheets 2,3} = {z: z ~ 0 or 1~ z}.

(4.3.62)
poles: (00 (2»)", (00 (3»)", (0)2

and so R(z) may be written

Now suppose we choose fl(z) = 1, f2(Z)=y, f3(Z)=y2, an example
discussed by Shafer [40], so thatf2(z) has a simple pole at the branch point
z = 0, and f3(Z) a double pole there. In the notation of Section 4.1,
a l = a2 = O. The function R(z) has

R(z): zeros: (00(1))2(n+1)

R(z) = 3 exp(n~(z))(1 _ y)2 (4.3.63)
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(4.3.65)

(4.3.66)

The polynomials {piz)} follow from (4.1.3)-(4.1.5) and are easily deter
mined explicitly in this case. Thus,

PI(Z) = zn((1- YI)3n+2 + (1 - WYI)3n+2 + (1 _ W2YI)3n+2)

piz ) = zn((1- yyn+2 + w2(l- WYI)3n+2 +w(l - w 2YI)3n+2)Yl l

piz) = zn((1- yJ3n+2 +w(l - WYI)3n+2 +w2(1 - w 2YI)3n+2)YI 2

(4.3.64)

where Y1 corresponds to sheet 1 and w = exp(2ni/3).
For type II polynomials similar constructions are possible. Thus, from

(4.2.5), T(z) may have poles only at the poles of {Biz)} and at
(oo(l)(m-l)n. If the set of poles of {Biz)} is m - 1 +g in number, then,
after the zeros at (OO( 2l t+ I

, ... , (OO(mlt+ l, g zeros of T(z) remain, which
may be determined as in Section 3.1.

Thus, in the example above, Biz),j= 1,2,3, are proportional to 1, y- I,
y- 2

, so that the set of their poles is (1)2 and T(z) has

T(z): zeros: (oo(2l)n+l, (OO( 3l t+ 1

which gives

T(z) = exp(-mp(z»(y2+Y + l)y- 2.

From (4.2.11) we find, with h(y) = 1 +Y + y 2,

ql(z) = z2n«h(YI»3n+1 + (h(WYI»3n+1 w + (h(W 2YI»3n+1 w 2)Y1 2

q2(Z)=z2n(h(YI)3n+1 + (h(WYI»3n+1 w2+ (h(W 2YI»3n+1 w)Yl l

Q3(Z) = z2n(h(YI)3n+1 + (h(WYI»3n+1 + (h(W 2YI»3n+I). (4.3.67)

These examples give asymptotic forms which satisfy the equations of the
conjecture, and other cases are easily constructed for which the conjecture
may also be tested.

4.4. Rigorous Generalizations of the Results of Section 4.3

The results of Bernstein-Szego [45), referred to in the introduction, relate
to the surface y 2 = Z2 - 1 of Section 4.3.2, with functions fl (z ) = 1 andfiz)
such that it can be approximated adequately by the form (4.3.43). More
precisely, it is required that

f2(z) = const. + (2ni) -I J dz X:;: 1/2(Z(ll) a(i)(z - z) -I, Z E 9/0
L

(4.4.1 )
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with X(z) = ZZ - 1 and a(z) a strictly positive function, z E S, satisfying the
smoothness condition (1.1.8). The results for real a(z) were generalized to
complex a(z) first by Baxter [5,6] and later by Nuttall [37,32].

The original proof of Bernstein-Szego [45], as well as the later work,
applied to polynomials orthogonal on the unit circle. From these
polynomials can be constructed polynomials orthogonal on L with the help
of the transformation (4.3.29). An argument in [32], repeated from [37],
completes the discussion by showing that, if the polynomials on the unit
circle are unique, as they are for large enough n, then the polynomials on L
are also unique.

Both generalizations give the same asymptotic results as those for real
weight a(z) described in Section 1.1 and of course these results follow from
the conjecture of Section 3.2. The conditions on a(z) are different, however.
Baxter requires a(cos 8) to be integrable over 8, -n ~ 8 ~ n and the Fourier
coefficients of log a(cos 8) have to be such that the sum of their absolute
values converges. Nuttall requires the same conditions as Bernstein-Szego
except that a(z) may be complex.

It does not appear likely that the method of Baxter can be extended to
apply to polynomials orthogonal on sets S such as those of Section 4.3.1, for
then the polynomials may have zeros away from S. However, the integral
equation method of Bernstein-Szego [45], used also by Nuttall (37), has
been modified by Nuttall and Singh [31] to handle this case. We now
summarize the main points of this work.

We consider the surface (3.4.4) and suppose that no zero of Y(z) of
(3.4.7) lies on S, so that S consists of I components. We take/l(z) = 1 and
set

Iz(z) = const. + (2ni) -I f dz X+: l/Z(Z(l» a(z)(z - z) -I, Z E S¥o
S

(4.4.2)

where a(z), z E S, is a non-vanishing complex function satisfying smoothness
requirements set out in [31] that are analogous to (1.1.8). They lead to the
result that Pn(z), the inverse of a polynomial of degree n-I + 1, can be
found such that, with A> 0,

sup Ia(z) - Pn(z)1 < const.(log n) -I-A.
zeS

(4.4.3)

Now suppose that polynomials pz(z) of degree n, n + 1 corresponding to
liz) of (4.4.2) with a(z) replaced by Pn(z) are denoted by p(z), p'(z). These
are Akhiezer polynomials with properties as described in Section 4.3.1. We
take a = a!'... , ai_I (also called C1"'C1_1) and a'=a~,...,a;_1 to be the
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divisors corresponding to the two polynomials and construct ji(Z), ji' (z) from
the appropriate X(z) of (4.3.20) after multiplying by the normalizing factor

I-In (I + laj l)-I/2.
j=1

(4.4.4)

We assume that both the divisors are unique and that no aj,j = 1,...,1- I,
is on sheet 1 satisfying lajl-I <e and no aj ,j = 1,...,1- 1, is on sheet 2 with
Iaj I-I < e. In [31] we showed that it is possible to find e >0 such that, for
large enough n, values of n exist, consecutive ones differing by no more than
t, that satisfy these conditions (see Section 4.5). In case any aj = 00(2), we
use the limit as ar-t 00 (2) to define ji(z) and similarly for ji' (z) in case any
aj = 00 (I). Thus ji' (z) is always of degree n + 1 but ji(z) may be of degree
<no

The integral equation is constructed by making use of the properties of the
reproducing kernel for weight X- I/2(Z) piz). The general case of Section 2.2
reduces to a form analogous to that used by Bernstein [7]. The equation for
piz), the polynomial of degree n corresponding to/2(z) of (4.4.2) is

P2(Z) =p;;lji(Z) +p;;1 f dzX+ I/2(Z(I)(o(z) - piz»(ji(z)ji'(z)
s

- ji'(z)ji(z»(z - Z)-I P2(Z) (4.4.5)

where Pn is bounded and non-zero when the conditions on the divisors hold.
In this case it was shown in [31] that, no matter what polynomial of degree
n piz) may be, the integral on the right of (4.4.5) may be bounded by const.
(log n) -.t sUPzes IP2(Z)! for z E S. This means that for large n the integral
equation may be solved by iteration and we have, for all finite z,

piz) =p;;lji(Z) + const.(log n)-.t exp(n Re ~(Z(2)) 0(1) (4.4.6)

showing that, except near the zeros of ji(z), the dominant contribution is

(4.4.7)

The asymptotic form of the Akhiezer polynomial p(z) is given in terms of
x(z) from (4.3.20), with Pn(z) substituted for p(z) in (4.3.21), (4.3.24). For
large n, (4.4.3) shows that this x(z) approaches that we would find by using
o(z) in place of p(z). As we remarked in Section 4.3.1, this x(z) is the
(usually) unique solution of the conjecture for liz) given by (4.4.2).

We can summarize by stating fact, for functions of the form (4.4.2) with
the restrictions on S and o(z) described, the conjecture correctly and
uniquely predicts the asymptotic behavior of the polynomials PI(Z), P2(Z)
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provided that the divisors a, a' obtained by solving (4.3.28) with a(z)
replaced by p(z) satisfy the conditions

(i) a, a' are unique and not close to being special

(ii) no aj is near 00(1), no a; is near 00(2) (see Sec. 4.5).

These conditions are no doubt too restrictive, and the conjecture probably
holds in this case for all n. In any case, as was shown in [31], relations
between the polynomials included in the above conditions and the inter
vening ones can be found that lead to the result that the diagonal Pade
approximants to IZ(z) of (4.4.2) converge in capacity, outside S.

When I = I, we are back to the Bernstein-Szego case with complex
weight. All sufficiently large values of n meet the conditions and the
Nuttall-Singh argument above provides an alternative proof of the
conjecture in this case.

4.5. Asymptotic Normality

In the examples discussed in Section 4.1, 4.2, 4.3 for which g ~ 1, the
normality of diagonal type I polynomials of degree n - I depended
asymptotically on a divisor c(n) = c,(n) ... cg(n). Thus, if we define, for
c~O,

Condition N.(c): No cj ' j= l,oo.,g, is within c of 00(1) and c is
not within c of any special divisor (4.5.1)

then if N.(c(n)) is true for some fixed c >0, the corresponding point
Pn = {Pj = n, j = 1,..., n} is normal for large n. Similarly for type II
polynomials of degree n there is a divisor t(n) such that, if N Jt(n)) is true, Pn
is normal. The equation for c(n), for example (4.1.10) or (4.3.9), may be put
in the form

(4.5.2)

where the symbol ~ means that a meromorphic function exists with zeros,
poles at points on the left, right of (4.5.2), respectively. Here, d is a fixed
divisor of g points. There is a similar relation for t(n), but it turns out using
(4.2.12), that c(n), t(n) are connected by

(4.5.3)

Note that the branch points {bj } have been assumed to all have winding
number 2, but this restriction could probably be easily removed in this
section.

In [31] it was proved that, in the case m = 2, it is possible to find c > 0
and no such that the length of the longest sequence of consecutive integers

640/42/4-4
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with n > no for which Nic(n» is not true is at most g + 1. We suspect that a
similar result is true in general for m > 2. For example, consider the case
g = 1, m = 3. If cl(n) = cl(n + 1) = 00(1), then it follows from (4.5.2) that

(4.5.3)

which is equivalent to the statement that exp(?(z» is meromorphic, that is,
has only zero periods. If.9f does not possess this property, then we could no
doubt show that no two consecutive integers exist such that N J..c(n» is not
true in this example. The general case remains to be discussed.

Another interesting point concerns normality expressed in terms of type I
or type II polynomials. As we remarked in Section 1.3, Loxton and van der
Poorten [26] showed that, if the type I polynomials at Pn are unique and the
remainder is of lowest possible order, then the corresponding type II
polynomials are unique and QI(Pn, 0) *O. In view of our relation between
normality and the condition Nlc), we expect that the following should hold.
If c(n), t(n) are related by (4.5.3), then No(c(n» true implies No(t(n» true
and vice versa.

For the case m = 2, this statement is easy to prove, using the form of
special divisors given in [31]. If g = 1, m > 2, there can be no special
divisors and again the statement follows from a consideration of the
meromorphic function W(z) defined by

W(z)dz =dw1 (4.5.4)

where dW 1 is the differential of the first kind (see Section 3.1). The function
W(z) has first order poles at bl"'" bv and second order zeros at
00 (I) , ... , 00 (m). We expect that an extension of this argument might prove the
statement true in general.

4.6. Hypergeometric Functions

Chudnovsky [12] has constructed a number of examples involving
hypergeometric functions and their generalizations for which the H-P
polynomials can be determined exactly. We discuss one such case in this
section and another in Section 4.7.

Here we take

F1(x) = 1

Fix) = ~1(1, WJ; c;x), j=2,...,m
(4.6.1)

where no two of 1, {wJ}' c differ by an integer. Chudnovsky [12] was able to
generalize the work of Mahler [27] (who worked with c = 1) to give an
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explicit form for the remainder for type I polynomials defined by (1.3.1).
Thus in this case (with WI = 0)

where

with

m

L Pip, x) Fj(x) = R(x)
j=1

Pj

z/s, w) = n (s +k - w).
k=O

(4.6.2)

(4.6.3)

(4.6.4)

(Note that for this section only it is convenient to have a somewhat different
definition of the function R (x).)

We [4] have shown, after Chudnovsky [12], how to obtain from (4.6.3)
the asymptotic behavior of R(x), and from that Pip, x), in the diagonal case.
The results are consistent with (3.2.4) and (3.2.5) for an appropriate
Riemann surface. Our main aim here is to work out the behavior of type II
polynomials by using their connection (2.1.3) with type I polynomials, and
we shall not describe the derivation of the required type I asymptotics. A
technical problem makes the calculation for diagonal type II polynomials
somewhat involved, so that we shall instead treat a near-diagonal example.

From now on we restrict attention to the case m = 3 and suppose that {pi!
to be used in (4.6.2) have the form p/ = n + 1 + 0/, i = 1,2,3, with 0/

independent of n. The technique of [4] leads, after an appropriate choice of
constant in (4.6.3), to

R(x) = (1 - y)3n+ 1+c+Gl+G2+G3(_y)-W2-W3-C(1 _ zy-l

X {1 +n-I[C +°1 - 6- 1(1 - Y)Y«OI - O2)2 + (0 2 - 03)2

+ (01- O 2)(02 - °3»] + O(n- 2
) (4.6.5)

where, as always z = x - I, and

(4.6.6)

The constant C in (4.6.5) does not depend on the values of 0/. The value of Y
to be used in (4.6.5) when x ~ 0 is Y ~ 1 - x/3.

In this case the surface of the conjecture turns out to be

(4.6.7)
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as in Section 4.3.4. The three points x( I), x (2) , x(J) E .9f corresponding to the
same point in the x-plane are such that

(4.6.8)

where Yj means y(xU». Thus .9f may be mapped on to the y-plane as follows

Sheet 1: IArgyl <n/3

Sheet 2: n/3 <IArg y I<2n/3

Sheet 3: 2n/3 <IArg y I~ n.

(4.6.9)

The form (4.6.5) is initially valid in sheet 1 and we presume that it may be
continued to represent the asymptotic behavior of the continuation of R(x)
along a path from x(l) to X(2) to x(J) such that 11 - y I is increasing, provided
we avoid branch points. Thus if Arg y I >0, we may follow a circle in the y
plane clockwise to Y2 =YI exp(-2ni/3) to Y3 =YI exp(-4ni/3). If argYl <°
the circle must be followed anti-clockwise. Of course (4.6.5) is not valid near
its singularities.

Following our previous approach, the polynomials Pip, x) are obtained by
solving

3

L Pip, x) Fix(i» = R(x(i»,
j=1

i = 1,2,3 (4.6.10)

where the continuations in Fix), R (x) are made as explained above. In [41
we treated diagonal type I polynomials but now we choose sets alk

), i,
k = 1,2,3, so that .ul!> of (2.1.2) is given by .u~l) =.u~l) = n, .u~l) = n + 1.
This means that

i, k = 1,2,3 (4.6.11)

makes plk) = n + 1 +alk) agree with (2.1.1). Solving (4.6.10) for the various
Pj(P(k), x) and then solving (2.1.3) gives

where

3

Qj(u(l), x) = L Fj(x(k» Tk(x)
k=1

3

Tlx)=x 3n +2(detR)-1 L eijkR (2)(x(/)R(3)(x(j».
i,j=1

(4.6.12)

(4.6.13)

We have written R(k)(X) as the remainder in (4.6.2) corresponding to p(k),
and

i,j= 1,2,3. (4.6.14)
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From (4.6.10) we have

det R = det P det F

=X3n + 2 det[F;(x(j»)], i,j = 1,2,3 (4.6.15)

from (2.1.6).
Now suppose that x (/; Sf, where Sf is the curve on which

11 - Ytl = 11 - Y21, or in this case {x: 1m x = 0, x > I}. We see from (4.6.5),
(4.6.13) that [Tt(x)[ ~ [Tix)l, ITix)[ so that, as n---+ ee,

(4.6.16)

Substituting (4.6.5) in (4.6.13) then shows that, up to a constant multiple,

Tt(x)- [detF]-t [(1-Y2)(I-Y3W n
+I+C (Y2Y3)-W 2-w J -c

X (1 - Z(2)y-1 (1 - Z(3)y- J (Y2 - Y3)(1 - Y2 - Y3)' (4.6.17)

If we had chosen ,Ill!) = n, i = 1,2,3, the contribution to (4.6.17) coming
from the terms of order n - J would have vanished and it would be necessary
to work out the O(n- 2

) term in (4.6.5).
The work of [4] shows that

(4.6.18)

Now it might appear that (4.6.17) is discontinuous as YJ crosses the positive
real axis on account of the fact that Y2' Y3 change discontinuously at this
point, but a careful check shows, with the help of (4.6.18) that (4.6.17) is in
fact continuous and TJ(x) can be represented by

which is analytic in [arg Y I< 27C/3, i.e., in gpo as the conjecture requires.
Let us now consider the construction of 'I'(z), analytic in

gp3(!argyl > 27C/3), which should be related to T(z) by (3.2.13). We choose
g. = 1, g2 =Y, g3 =,uy2, so that G(z) of (3.2.8) turns out to be

G(z) = const,(1 - x),

and pick the constant ,u to make

(4.6.20)

G(z) = I-x, argy = 27C/3. (4.6.21)

On the other part of s, argy = -27C/3, we will have

G(z) = -(1 - x), argy = -27C/3. (4.6.22)
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We assert that I/I(z) may be written as

x (1 +y)( 1 - x)-1,

z E.9I3 = {y: Iargyl> 2re/3}

(4.6.23)

where the constant A. is chosen appropriately. It must be checked that
(3.2.13) holds on s = {y: largyl == 2re/3}. In doing this the reader must
remember the definition of D(z) to be used. Four different values of the
constant in (4.6.18) are required, corresponding to argy = ±2re/3, Iyl > 1,
<1.

We have shown that

j= 1,2,3 (4.6.24)

for x(/; S', i.e., largyl < re/3, where T(z) solves the boundary value problem
of the conjecture. In this case the points on sheets 2, 3 corresponding to both
z = 0, 00 lie on s, and the functions Fix) are singular there. This
complicates the specification of further conditions on the solution of the
boundary value problem needed to complete the conjecture, and the question
of how to state these conditions in a case such as this remains unanswered.

4.7. Contiguous Generalized Hypergeometric Functions

We are concerned here with finding H-P polynomials in the case when

(4.7.1)

and Fj(x), j = 2,... ; m are functions contiguous to these, which means that
they are of the same form with parameters {ad, {cd differing by integers
from those of (4.7.1). All such contiguous functions lie in a Riemann
module, as we shall explain below, and Chudnovsky [12] used his general
theory to construct the polynomials of type I for a particular choice of Fj(x),
j = 1,..., m. Unfortunately, the general theory does not apply to this case
(unless m = 2) because two or more of the exponents of the solutions valid
near x = 1 of the mth order differential equation satisfied by (4.7.1) differ by
integers so that Theorem 4.5 of (12) is incorrect.

In this section we extend the ideas of Chudnovsky by introducing the
concept of the dual Riemann module and compute its form in the present
case. This incidentally leads to relations between generalized hypergeometric
functions which may be new. For an example with m = 3 we find an
expression for both types of H-P polynomials, those of type II involving the
dual module. Because of the explicit nature of our solution we can determine
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the asymptotic form of the polynomials, and it is found that we have an
example of case 2 of the conjecture.

The method of the example is easily extended to the non-diagonal case,
other choices of contiguous Fj(x) and higher values of m. Having found the
H-P polynomials we could easily determine the coefficients appearing in the
formulae relating sets of neighboring degrees and in this way obtain a
generalization of the Gauss continued fraction for 1;F\(a l + 1, a2 + 1;
c2+ l;x/2FI(al,a2;c2;x).

4.7.1. Dual Module. Throughout we suppose that no pair of a1"'" am'
C1"'" Cm' where C1 = 1, differ by an integer. Let

(4.7.2)

where the generalized hypergeometric function is given by a power series
[12] convergent for Ix I< 1. This function satisfies the differential equation of
order m

(4.7.3)

with e= xd/dx. Smith [43] has given two sets of m independent solutions of
(4.7.3), which are

and

j= l, ...,m (4.7.4)

yj'Xl)(X)=X- aj Jm_I(I-cl +aj,..., l-cm +aj ; l-al +aj ;...,

[1-aj+aj],...,I-am+aj;X-l), j=l,...,m (4.7.5)

where the parameter in [] is omitted. We take all these functions to be
single-valued in the x-plane cut from 0 to 00 along the real axis.

Let us represent these solutions in the form X(O), X(ool, m-dimensional
column matrices. Smith [43] has shown that

(4.7.6)

where the m X m matrix H has the form

(4.7.7)
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with

and
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C = diag(exp(incj»

A = diag(exp(inaj» j= 1,...,m (4.7.8)

(4.7.10)

G
jk

= r(cj -ak)r(1 +ck-cj) fr r(at -ak)r(1 +ct-Cj). (4.7.9)
r(Ck - ak) t# r(Ct - ak) r(1 +at - cj)

Smith also showed that (G - 1)jk is given by the above formula with C-+ -a,
a-+ -c.

Now the equation (4.7.3) and all its solutions, or their analytic
continuations, are singular at x = 0, 1, 00 and nowhere else. The monodromy
matrix for a given singular point relates m independent solutions of (4.7.3) to
their continuations taken along a small circular path around the singular
point. The particular form of a monodromy matrix depends on the choice of
m independent functions. We shall use y~O)(x) and its continuations round
x = 00 1,2,... , m - 1 times, and these functions, analytic in the cut x-plane,
will be denoted by Wix), j = 1,..., m. Thus

W (x) =y(O)(x) = HTy(oo) = HTH- I y(O)
1 1 _1_ -I -

Wzex) = HfA 21'(00) = HfA 2H- I1'(0)

and so

where the column matrix HI is given by

j= 1,...,m (4.7.11)

j= 1,...,m. (4.7.12)

We have made use of the special form (4.7.5) of 1'(00) to continue about
x = 00. If we set IV = col(Wj ), U = diag(HIj) and K jk = exp(2niakU - 1), j,
k = 1,..., m, then it is found that (4.7.11) is equivalent to

(4.7.13)

To find the monodromy matrix at x = 0, Vo, we continue (4.7.13) round
x =°to obtain, with the help of (4.7.4),

(4.7.14)

so that with

(4.7.15)
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x=O. (4.7.16)

Using (4.7.7), we have

Vo=KTG- 1C 2GT- 1K- 1

where T=diag(Glj)' so that U= TA.
In the same way, using

we find that VCD' the monodromy matrix at x = 00, is given by

(4.7.17)

(4.7.18)

(4.7.19)

The monodromy matrix at x = 1 may now be found, since the product of the
three monodromy matrices must equal the unit matrix [12].

The Riemann module [12, 13] consists of all m-plets such as W for which
each component is analytic in the cut x-plane, and which continue round the
branch points with the same monodromy matrices. Any (m + 1) such m-plets
are related linearly with coefficients polynomial in x. It is shown in
Appendix 1 that Vo and VCD are unchanged if integers are added to a 1 , ... , am'
C2 ,•• , Cm' SO that all functions contiguous with (4.7.2) belong to the same
module.

We define the dual module as the module based on the same singular
points but with monodromy matrices V related to the original V by

(4.7.20)

We aim to determine a set of functions in the module dual to the one above.
We let adenote the matrix G when the signs of ai''''' am' C2,... , cmhave been
changed, and similarly for other matrices. Note that A=A -\ C= C- 1

•

Let us define matrix J as

J = TG- 1C 2GT- 1• (4.7.21)

In Appendix 1 we show that a diagonal matrix n exists such that

from which it follows that

Vo= (V~)-l = (KT)-l (JT)-l K T

= (KT)-l nTo-lc2oT-ln-IKT

= SVOS- 1
,

(4.7.22)

(4.7.23)
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where

Similarly, we find that

Thus, since

we find that

with
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v00 = (V~)-I

=SV S-I.
00

w=Sw

(4.7.24)

(4.7.25)

(4.7.26)

(4.7.27)

(4.7.28)

This gives an explicit expression Wfor elements of the dual module. We note
that S is unchanged if we pass to a contiguous function so that any function
contiguous to (4.7.2) may be used to generate an element in the dual module.

4.7.2. Hermite-Pade Polynomials-Example. We use the ideas of Chud
novsky [12] to construct H-P polynomials in the diagonal case with m = 3
and

FI(x) = ~z(al' az, a3;Cz, c3;x)

Fz(x) = 3Fz(al> az+ 1, a3;Cz+ 1, c3;x)

Fix) = 3FZ(al> az, a3+ 2; cz, c3+ 2; x).

(4.7.29)

We denote by WU), j = 1,2,3, the elements in the module corresponding to
Fix) above. Additionally we define WU), j = 4,5, so that

WI (4; x) = 3FZ(al + 2n + 2, az + 2n + 2, a3+ 2n + 2;

Cz + 3n + 3, c3 + 3n +'3; x)
(4.7.30)

WI (5; x) = 3Fz(al + 2n + 3, az + 2n + 3, a3+ 2n + 3;

Cz + 3n + 4, c3 + 3n + 5; x).

The general theory [12, 13] shows that rational functions n/x), j = 1, 2, 3,
exist such that, for given A, !J.,

3

L WU) nix) = AX3n +Z!f(4) + fJ.X 3n +3W(5).
j=1

(4.7.31)
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Indeed, we may solve (4.7.31) for 1tix) to obtain

1t1(x) = det 1(A,4X3n+ 2W(4) + A,sX3n +3W(5)), W(2), W(3)1

/det IW(l), W(2), W(3)1 (4.7.32)

and so on.
In det IW(I), W(2), W(3)1 we replace each W(j) by (4.7.13), and then

(4.7.4), with the help of (A 1.12), shows that, near x = 0,

det IW(I), W(2), W(3)1 = X I
-(C2+ I) + I-(cj+ 2) X (analytic in x)

(4.7.33)

Similarly, near infinity,

det IW(l), W(2), W(3)1 = x- a ,-a2-a j X (analytic in X-I). (4.7.34)

We now wish to find the behavior near x = 1. Pochhamer [39) showed that
three independent solutions of (4.7.3) exist of the form

bo = 1 (4.7.35)

where s = 0, 1, d = c2 + c3 - a l - a2 - a3 • We note that d is the same for all
W(j), j = 1,...,5. A matrix P exists for which

(4.7.36)

where wix), j = 1,2,3 are functions analytic and non-zero at x = 1.
However, because two exponents differ by an integer, a similar form for
W(j), j = 2,..., 5, using the same P, will not contain the factor (x - 1) in the
second row. We deduce that

det IW(1), W(2), W(3)1 = (x - l)d X (analytic at x = 1). (4.7.37)

It follows that

det IW(I), W(2), W(3)1 = ax-C2
- CJ -

I (X - l)d (x - p). (4.7.38)

In the same way we find that the determinant in the numerator of 1tI (x) in
(4.7.32) has the form X-C2-Cj-I(X - l)d X (polynomial of degree (n + 1)),
and similarly for 1t2(x), 1t3(x).

If we choose A,4/A,S so that the numerator of 1t 1(x) vanishes at x = {3, then
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so will the numerators of nix), n3(x), since for that value of x the columns
Wo" W(2), w<3) are linearly dependent. With this choice of A4 /A s the
functions nix), j = 1,2,3 are polynomials of degree n which are the H-P
polynomials of type I for the functions Fix), j = 1,2,3, on account of the
fact that the right-hand side of (4.7.31) is O(X 311 +2

) as x~o on the first
sheet.

It is seen that the term containing W(5) in (4.7.31) has to be added to
Chudnovsky's form of the remainder [12] in order to make it correct.

The construction of the type II polynomials is based on the fact that, if X,
t are any elements from the module and its dual, respectively, then XTt is a
rational function of x with poles possible only at x = 0, 1, IX) (see Appendix
1). We introduce WU), j = 6, 7, 8, so that

W 1(6; x) = 3Fial + 2n, a2+ 2n, a3+ 2n; c2+ 3n, c3+ 3n; x)

W1(7; x) = 3Fial + 2n, a2+ 2n, a3+ 2n; c2+ 3n - 1, c3+ 3n + 1; x)

W1(8; x) = ~2(al + 2n - 1, a2+ 2n, a3+ 2n; c2+ 3n - 1, c3+ 3n; x)

(4.7.39)

and define

j= 1,2,3 (4.7.40)

with M l1U) given by (A1.l3). The constants Ak' k = 6, 7, 8 are still to be
determined.

The argument of Appendix 1 shows that eix),j = 1,2,3, are polynomials
of degree 2n. In view of (ALl5), the may be written in the form (for iiI see
(ALl7»

8 3

eix ) = L Ak L M llU)M l1U)-1 y!O)U;x)y!O)(k;x) B/Mll(k).
k=6 /=1

Thus

8 3

= L Ak L [MllU)M l1 U)-1 y~O)(i;x)y!O)U;x)
k=6 /=2

(4.7.41 )

- Mll(i) M l1 (i)-1 y~O)U;x) y!O)(i; x)] y!O)(k; x) ii/Mll(k),

i,j=1,2,3. (4.7.42)

Using the expansion (4.7.4) we see that the right-hand side of (4.7.42) is in
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(4.7.43 )

every case O(x3n ) for x::::; O. If A,k' k = 6, 7, 8 are chosen so that the coef
ficient of x 3n in the expansion of (4.7.42) for i, j = 1,2; 1,3, is zero, then
~ix) will be the type II H-P polynomials of degree 2n for the functions
Fix); j = 1,2,3. This leads to

A,6 = -A,gM 33(8)/M33 (6)

A,7 = -A, gM n (8)/Mn (7),

or from (Al.l3)

A,6= (c 2 +3n)(c3 -a l +n+l) A,g
(a l + 2n)(c2 - C 3 - 1)

A,7=- (c 3 +3n+ 1)(c2 -al +n) A,g.
(a l + 2n)(c2 - c3 - 1)

(4.7.44)

A consequence of the above remarks is that (4.7.41) may be replaced by
(Mll is invariant)

g

~ix)=jjIMll 2: y~O)(j;x)y~O)(k;x)12n
k=6

(4.7.45)

where it is meant that we expand in powers of x and cut ofT the expansion
after the term containing x 2n .

4.7.3. Asymptotic Behavior. To obtain the asymptotic form of the type I
polynomials of Section 4.7.2 we use, after Chudnovsky [12], the
Pochhammer integral representation [39]

(4.7.46)

The integral we write in the form

(4.7.47)

where

(4.7.48)
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and apply the saddle-point method [81. This requires solving the equations

alog J = -=....!..- +~ + 2t3 X = 0
ot2 I-t2 t2 I-t2t3x

Mog J = -=....!..- +~ + 2t2x = 0
ot3 1- t3 t3 1 - t2t3x

giving t2 = t3 = y, where y satisfies

(4.7.49)

(4.7.50)

(4.7.51)

For large n the approximate value of (4.7.47) is obtained by evaluating the
integrand of (4.7.47) at these values of t 2 , t 3 and multiplying by

[

8
2

10g J 8210gJ]_1/2
82t2 8t28t3

const. det
0 2 log J 82 log J
Ot3ot3 02t3

where the derivatives are evaluated at Y2 =Y3 =y. We find

I n:oo const. y 6n (U (l_yyraJyaJ) (l_y)-I/2-a 1 y a1-l (4.7.52)

where the constant is the product of the constant in front of the integral in
(4.7.46) and a factor independent of {aj}' {cj }.

Before proceeding, let us investigate (4.7.50), which describes the Riemann
surface .9f of three sheets

y3 _ 3yz +2z = O. (4.7.53)

This surface has genus 0 with square root branch points at z = 1, 00 and a
cube root branch point at z = O. The function ,(z) constructed according to
the procedure of Section 3.1 is given by

(4.7.54)

and so the sheets are chosen according to value of Iy I. With the notation of
Section 3.1 we find that the boundaries between adjacent sheets all
correspond to real z. We have

Sf = {boundary between sheets 1, 2} = {z: 0 :::;;; z :::;;; I}
(4.7.55)

S = {boundary between sheets 2, 3} = {z: -00 < z:::;;; Of.
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Now the analysis of Section 4.7.2 shows that for the diagonal polynomials
{piz)} (defined in (3.2.2)Lcorresponding to Fix),j = 1,2,3, of (4.7.29) the
exact remainder function R(z) is given by

where

3

L F/X) Pj(z) = R(z)
j=!

(4.7.56)

(4.7.57)

In order to work out the asymptotic form of R(z) for z ~ 00, corresponding
to Fix) ~ 1, j = 1,2,3, we may use (4.7.52) in (4.7.30) and analysis shows
that for y in (4.7.52) we must choose Yl> the value on sheet 1, which is the
solution of (4.7.50) with smallest modulus. The continuation of (4.7.52)
presumably gives an approximation to the analytic continuation of R(z) so
long as we continue along a path for which Re ¢(z) is non-decreasing. The
situation is similar to Section 4.6 but now we have a different surface.

Now it is clear that, if z E S, R(Z(3l) ~ R(Z(2l) ~ R(z(l), where the
various R(z) are evaluated by continuing along a path as above. Writing
(4.7.56) for Z(kJ, k = 1,2,3, and solving for p/z), we find, with the notation
of Section 3.2,

where, using (4.7.56) and (4.7.52),

z E 913 , (4.7.58)

with

3 3

d= '\' c·- ') a
J
,

'-- J .....
j=2 j=!

(4.7.59)

(4.7.60)

and y(fJ) is the solution of (4.7.50) with x = p.
The function R(z) is an approximation to R(z), neither of which are single

valued, z E!71. In 910 the functions {./j(z)} and R(z), R(z) are meromorphic
except for a branch point at z = 1, the branch point of 91 where sheets 1, 2
meet, which corresponds to y = 1. We insert a cut a as described in Section
3.3 from this point to s. We choose a to lie on sheet 2 and run from 1 to
+00 along the real axis in the z-plane, which is equivalent to the same set in
the y-plane.

To make the above functions single-valued on 91 in order to facilitate the
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analysis, we insert a cut p on sheet 3 along the real axis in the z-plane from 0
to +00, which corresponds to the negative real axis in the y-plane. With
these cuts, we expect R(z) '" R(z) will hold throughout ~ except near
branch points.

Now for the choice (4.7.29), (3.3.1) holds with /=2 at the point v given
by y = 1. We shall show that the conjecture of Section 3.3. holds with ~ of
(4.7.53) and (J as described above. We must demonstrate that xiz) given by
(4.7.58) is analytic, z E ~3' which means that it must be shown to be
continuous across the cut p. Let z be real, 0 <z < 1, and let Z(k)+, Z(kl_

denote points on sheet k just above, below the point z (i.e., with small
positive, negative imaginary parts). Then we have

Jj(z(l)+) =Jj(z(2)-)

Jj(Z(2)+) =Jj(z(l)_)
j = 1,2,3 (4.7.61)

which means that A j (Z(3)+) = Aiz(3)- ). Also, if we continue clockwise once
round z = 0, we find

and so

Jj(Z(3)_) -+Jj(Z(2)+)

Jj(Z(I)_) -+Jj(z(l)+),

Jj(z(2)-) -+Jj(Z(3) +)

j = 1,2,3 (4.7.62)

(4.7.63)

The continuation of D(z) may be carried out with the help of (4.7.38) and of
R(z) (round y = 0) from (4.7.59), and it is easily seen that Xj(z) has no
discontinuity across that part of p, 0 <z < 1.

Now R(z) is not singular at z = 1, z E ~3' and (4.7.36) shows that the
ratio A/z)/D(z) is analytic there, so that x/z) is continuous across the whole
of p. It follows from (4.7.58) that the equations (3.2.4), (3.2.5) of the
conjecture are satisfied.

From (4.7.59) we see that (3.3.2) holds with A(Z) that is derived from
(3.31), thus verifying this part of the conjecture.

We do not know of an integral representation that may be used to analyze
the asymptotics of the generalized hypergeometric functions needed for the
type II polynomials. However these functions satisfy third order differential
equations with polynomial coefficients and we expect that the same formal
expansion methods which give the correct result for (4.7.46) will still work.
That is we predict that (4.7.52) remains valid if we change the sign of n.
With this assumption we can show that the conjecture of Section 3.3 is valid
for the type II polynomials of Section 4.7.2.
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In Sections 5.1, 5.3, heuristic treatments of asymptotics for some
interesting examples are given (the work of Section 5.1 is perhaps not far
from being made rigorous). The results are in agreement with the conjecture
and are supported by numerical examples. Section 5.2 reviews an example
where the predictions of the conjecture are compared with numerical work.

5.1. Generalized Jacobi Polynomials

In this section we study the asymptotic behavior of polynomials PI(Z),
piz) of degree n corresponding to the case m = 2'/1 (z) = 1 and

3

liz) = TI (z - bjyJ
j=1

where the non-integers vj satisfy

Thus we have

as z-+oo(l)

(5.1.1)

(5.1.2)

(5.1.3 )

and piz) is the orthogonal polynomial for weight liz) in the sense (1.2.6).
The functions 1,/2(z) form a basis for a Riemann module (Chudnovsky

[12, 13]), and it is our hope that, if successful, the method outlined here for
determining the asymptotic behavior of PI(Z), P2(Z) may be extended to the
important general case of Hermite-Pade approximation to functions taken
from a Riemann module of dimension m.

The case at hand was first studied, in slightly more generality, by
Laguerre [25]. He showed that piz) satisfies a differential equation with
polynomial coefficients and obtained non-linear recurrence relations relating
the coefficients in this equation and the coefficients in the three-term relation
connecting polynomials with adjacent degrees. He was unable to solve the
recurrence relations or to obtain the asymptotic behavior of the coefficients.
A conjecture about this asymptotic behavior was given by Gammel and
Nuttall [16]. This conjecture, supported by numerical evidence, proposed
that the coefficients asymptotically were related to certain elliptic functions
of n. Approximate solution of the differential equation led to a result for
piz) consistent with the conjecture of Section 3.

We now propose an alternative method of proof, which although at
present containing some gaps, appears to be more promising than the
approach based on the Laguerre recurrence relations. It is based on the

640/42/4-5
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rigorous treatment of error bounds in the Liouville-Green, (LG, sometimes
called WKB) method described by Olver [38].

First we obtain the form of the differential equation satisfied by P2(Z) and
R(z) defined by

(5.1.4)

using a technique described by Chudnovsky [12]. We supposefiz) is made
single valued by inserting cuts joining the branch points b l , b2 , b3 and the let
R(z(l») denote the value of R(z) on the first sheet (the one we use in (5.1.3)).
Let R(Z(2») be a continuation of R(z(l») through a cut, so that R(Z(2») is
single valued in the cut plane.

Then, with ' meaning differentiation, we have

The determinants are analytic in the cut plane except at the branch points
and possibly at 00. From (5.1.4) and the behavior R(z(l») '" z-n-l,
R(Z(2») '" zn near 00 we deduce that

I
R' (z(l)), R(z(l)) I

X(Z)f2(Z) det R'(Z(2»),R(z(2») = 7t 1(z)

2 IRI/(z(I)),R(z(l)) I
X (Z)f2(Z) det RI/(Z(2»), R(Z(2») = 7t 3(z)

2 IRI/(Z(l»),R,(Z(I)) I
X (Z)f2(Z) det RI/(Z(2»), R'(Z(2») = 7tiz)

(5.1.6)

(5.1. 7)

(5.1.8)

where 7tiz), j = 1,2,3, is a polynomials of degree j, and X(z) = nJ= 1

(z - bj)' Thus R(z) and also, it may be deduced,piz), satisfy an equation of
the form

X(z)(z -zn)RI/(z) + 7tJCz)R'(z) + 7t2(z)R(z) = O. (5.1.9)

The form of the solutions of (5.1.9) near the branch points and 00 places
restrictions on 7t2(z), 7t3(z) and we find that

7t3(z) = (z - zn) Z(z) -X(z)

7tiz) = -n(n + 1)(z - vn)(z - an)

(5.1.10)

(5.1.11)
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where the degree 2 polynomial Z(z) is given by

Z(z)!iz) = (X(z)!iz»'.
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(5.1.12)

The differential equation (5.1.9) has a singular point at zn' but, since no
solution of (5.1.9) is singular there, this must be an apparent singularity [21]
which leads to the relation

n(n + 1)(v:., - zn)2 (an - zn)2 + (v n- zn)(an- zn)(X'(zn) - Z(zn»

+ (vn+ an - 2zn) X(zn) = ° (5.1.13)

If we take Ivn-znl < lan-znl then it can be shown from (5.1.13) that

(5.1.14)

To apply the LG method we remove the R' term from (5.1.9) with the
substitution

so that

where

R(z) = (z - zn)l/2 (X(Z)!2(Z»-1/2 u(z)

u"(z) = A(Z) u(z)

(5.1.15)

(5.1.16)

A(Z)=n(n+l)(Z-an)(z-vn)_[ niz ) ]'_[ niz ) ]2.
X(z)(z - zn) 2(z - zn) X(z) 2(z - Zn) X(z)

(5.1.17)

At this point we interrupt the development to note an interesting obser
vation made by G. Chudnovsky. Suppose we choose b l = 0, b2 = 1 and
b3 = b. Then the differential equation relating zn to b is the Painleve equation

d
2
z 1 \ 1 1 1 I (dZ) 2 \ 1 1 1 I dz

db 2 = 2" (~- + z - 1 + z - b \ db - /I; + b - 1 + z - b \ db

z(z - 1)(z - b) 1- iJb y(b - 1) l5b(b - 1) I
+ b2(b _1)2 a + Z2 + (z _ 1)2 + (z _ b)2 \ (5.1.18)

a= -2n(n + 1) + const., iJd, l5 = const. (5.1.19)

where the constants are independent of n. This follows immediately from the
work of Fuchs [15, 11].
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Now we quote the results of Olver's work [38] on the LG method as
applied to this case. We set

f(z) = (n + 1/2)2 (z - an)(z - Vn).
X(z)(z - zn)

and

g(z) = J..(z) - f(z),

and define

z [d2
]H(z)=f dt f-I/4(t) - (f-1/4(t»_g(t)f-I/2(t)

00(1) dt 2

(5.1.20)

(5.1.21)

(5.1.22)

Then the solution of (5.1.16) with the behavior z -n at <Xl (I) may be written

where

u(z) =f-I/4(Z) exp[-(n + 1/2) IIf(Z)](1 +e(z» (5.1.23)

(5.1.24)

Provided that path followed from <Xl (I) to z in the integral (5.1.22) is a
progressive path, it may be shown [38] that

le(z)1 ~ exp{Vz(H)} - 1

where the variation Vz(H) is

Vz(H) = fZ Idtl I dH(t) I
00(1) dt

(5.1.25)

(5.1.26)

with the integral taken along the same path as above. A progressive path is
an adequately smooth path along which Re V/(z) is non-increasing as z
moves away from <Xl (I).

Now to proceed we suppose that there is no subsequence of the integers n
for which an --+ bJ , j = 1, 2 or 3, or an --+ <Xl. We postulate the existence for
each n of a point Zo and progressive paths rk , k = 1, 2, 3, from <Xl (I) to zo'

giving rise to values IIf(Z~k). The paths are such that r 2r"ll encircles b2once
in a counter-clockwise direction and r 3r"ll encircles b3once in a clockwise
direction, but neither loop includes b l or an, and they do not pass close to
zn' but each path passes through a point Zoo near <Xl (I). There must exist
constants c5l' c52 >0 such that

for each path rJ (5.1.27)
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(5.1.28)

Similar paths must exist for the pairs bi' bz and b3 , bi' these points being
relabelled if necessary in order to make possible the construction of the
paths.

To use this conjecture we write from (5.1.4)

j = 1,2,3 (5.1.29)

R(Z~3»/R(z~Z» = {lfz1(z&3l) - fZI(Z~I))} +R(z~I)/R(z&Z»}

/(fzl(Z~Z» - fZl(Z~I))). (5.1.30)

On substituting from (5.1.1), (5.1.15) and (5.1.23) into (5.1.30) we obtain,
assuming that Tzr11 does not contain zn'

since, from (5.1.28), R(z~l)/R(z&Z» -+ 0 as n -400 much faster than n- I
.

Two similar equations may be obtained by considering the other pairs of
points. In view of (5.1.14) we may write, using part of Tk to evaluate the
integral,

fZO [(t a)] lIZIf/(Z(k)) = dt - n + O(n- ZIZ )
o Zoo X(t) ,

so that (5.1.31) gives, on distorting the contours,

k = 2, 3 (5.1.32)

(5.1.33)

and similarly for b1bz,b3 b1 •

It is known [18,36] that the equations obtained by replacing the right
hand side of (5.1.33) by zero have solutions an = bi' bz, b3 or an = a (which
might be called the center of capacity) and no other. It follows that an
approaches one of bi' bz, b3 , a possibility we have ruled out for now, or that,
from the implicit function theorem,

(5.1.34)

(We must assume that the points bl bzb3 are not collinear, so that a does not
coincide with any of them.)
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Now to continue we assume that zn is not near bi , j = 1,2,3, or a or 00.

Using (5.1.34) in (5.1.13) gives

(5.1.35)

which incidentally makes it possible to improve the error in (5.1.14) to
O(n- 1

). For use in (5.1.31) we expand the integrand of (5.1.24) as

[
1 a-a 1 z -v ]1+- n +_ n n +O(n-2)
2 t-a 2 t-zn

(5.1.36)

so that (5.1.31) gives

(n +!) f dt(t - a)1/2X- 1/2(t) + !(n + D(a - an) f dt[X(t)(t - a»)-1/2

1 [X(Z) ]1/2+2 zn_n
a

f dt(t-a)1/2X- I /2(t)(t-z n)-1

-log(sin 7tV3/sin nv2 ) + 2nim 1 = O(n- I
) (5.1.37)

where ml is some integer. The contour in (5.1.37) is the loop T 2F;I. There
are similar equations for the other pairs bl b2 ,b3 b1 • From two of the
equations we may eliminate an and obtain an equation for zn' which, after
some manipulation, may be put in the form

(5.1.38)

We have used the notation of (4.3.25), with the surface !if corresponding to
y2(Z) = X(z )(z - a). The set S is

where

S = {z E C: Re ;(z) = O}

;(z) =rdt(t-a)I/2 X- 1/2(t)
b l

(5.1.39)

(5.1.40)
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so that S consists of arcs running from a to each point bj , j = 1,2,3. The
function a(z) is defined by

(5.1.41)

as in (4.3.27)
If we set O(n-I) = 0 in (5.1.38), then there is a unique solution an E Yl,

so that if Zn is not near a or bi' b2, b3then Zn is near an' The situation is just
as proposed by the conjecture. The approximation to R(z) has the form

Ro(z) = (z - an)l/2 (X(z)fiz»-I/2 (z - a)-1/4 X I/4 (z)

exp I(n +Dr dt(t-a)llz X- 1/2(t)[1 +AnCt-a)-I] (5.1.42)
I Zoo

+ !XI/Z(an)(an- a) -1/2 r dt(t - a) liZ X-IIZ(t)(t - an) -II.
Zoo \

The approximations to piz), namely xiz), j = 1,2, analytic on sheet 2, are
given by solving an approximation to (5.1.4) and its continuation,

f;I(Z(I)XI(Z) +Xz(z) = 0

f;I(Z(2)xI(z) +X2(Z) = Ro(z(ZJ).

(5.1.43 )

(5.1.44)

No matter which path is used to continue Ro(z) across S onto sheet 2, it is
ensured that the same Xj(z) will be obtained.

To complete the discussion it is necessary to rule out the special cases not
treated so far, but this remains to be done.

5.2. Hypergeometric Functions-A Generalization of Section 4.6

We extend the example of Section 4.6 and study the case

FI(x) = 1

Fix) = 2FI(I, wj ; cj ; x), j=2,... ,m
(5.2.1)

where no two parameters in (5.2.1) differ by an integer. It is possible to show
that these functions belong to a Riemann module, which leads to the hope of
an eventual rigorous treatment (see Section 6.3), but here we mention the
results of Baumel and Nuttall [4] for m = 3. They compared the predictions
of the conjecture for type I polynomials with the results of computer
calculations.

We use the same surface Yl as in Section 4.6 given by (4.6.7). The
homogeneous Hilbert problem (3.2.11) derived from the conjecture may be
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solved by applying the methods of Muskhelishvili [29] in the y-plane, which
is a representation of 9l. It was shown [4] that

where

xiz) = (-2ni)-1 exp(-inwj)(F(w) F(cj - wj)jF(cj»

X AjZn(l- Y3)3n+2 (_Y3)1l+ 3wj

X (1 - wY3F (1- WY3)~ (1 - Z)l-Cj, j = 2, 3

R(z) = zn(l - y)3n+2 (_y)1J (1 - wyF (1- wy)~

(5.2.2)

(5.2.3)

and

W = exp(2nij3), w= exp(-2nij3) (5.2.4)

with

p=c2 +c3 - w2 - w3 - 3

y = 1 - !(c2 +c3) +.u
0= 1 - HC2 +c3) -.u
.u = (2ni) - 1 log p

p = sin(n(w3 - w2»jsin(n(w3 - w 2 +c2 - c3»

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)

(5.2.10)

give a solution of the boundary value problem of the conjecture (3.2.4),
(3.2.5) for the diagonal case.

The general solution is obtained by multiplying by an arbitrary rational
function of y. Because points at 00 lie on s and because these points and
others on s are singularities of Jj(z), j = 2, 3, we are unable to predict the
form of this rational function. However, the calculations suggest that, in
some cases, the form written is probably correct. In others, it seems to be
necessary to multiply by a linear function of y. Some guesses about the form
of this linear function are given in [4], but a complete understanding is still
lacking.

5.3. Saddle-Point Method

The general structure of polynomial asymptotics presented in this paper
was first suggested, as mentioned in [30] in the case m = 2 by a heuristic
treatment of the multiple integral representation of orthogonal polynomials,
(2.2.10) of [45], which is a special case of (2.4.2), (2.4.5). In [3] we
extended the idea to certain examples of type I polynomials in the case
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m = 3. Here we review the previous work and consider how the results relate
to the conjecture of Section 3.

We illustrate the idea by analyzing the case m = 3, although the method
can be generalized to higher m with little difficulty. We suppose that
II(z) = I and that Iz(z) is analytic in the z-plane cut between bI' bz and
similarly for liz) with a cut joining b3 , b4 • We assume that these two cuts,
locations determined later, do not intersect. If attention is restricted to the
diagonal case, where PJ(z), j = 1, 2, 3, are each of degree n, then {piz)}
satisfying (3.2.3) are given, for j = 2, 3 by (2.4.2). If the contour of
integration is contracted until it closely surrounds arcs rz' r3 joining b" bz
and b3 , b4 , respectively, it is seen that the path of integration for variables
{ziZ)} may be taken to be rz with wz(z) replaced by the discontinuity

12+(z) - Iz_(z), and likewise for j = 3. We are assuming that the functions
{.Ij(z)} are such that the integral exists in this form.

The argument of [3] is that the factor I given by

(z?) - zj2»)Z ] [ .6 (z)l) - zj3»)z] [fr fr (zlZ) - zj3»)]
l<j=O 1= I j=O

(5.3.1 )

is the dominant factor in the integrand for pz(z) and similarly for piz). For
large n, the integral may be evaluated by expanding about the point in the
space of integration where III is largest, provided the arcs rz, r3 have been
chosen so that this maximum is least.

In [3] a procedure was given for finding these arcs and the dominant
factor in the asymptotic behavior of Pz(z), P3(Z). A Riemann surface .9l' of
three sheets is constructed by taking one copy of the complex plane cut
along arcs joining bl b2 and b3 b4' This is joined to another copy cut along
arc b l b2 and to one cut along b3 b4 • The resulting surface is of genus zero
and has four square-root branch points at bj , j = 1,...,4, and an equation of
the form (3.1.1) can be obtained to describe it in which r(y, z) is of degree 3
in y and linear in z. (see [3, Appendix]. We call 00 (I) the point at 00 on the
sheet with both cuts.

Now for this surface the function ~(z) of Section 3.1 may be characterized
as such that exp(~(z)) is meromorphic with poles at 00(2), 00(3) and a double
zero at 00 (I). The location of the cuts is chosen so that the discontinuity of
Re ~(z) across each cut is zero. If we define the meromorphic function 'f/(z)
by

'f/(z) = ~~

then the real function pz(z), z E rz' is given from

(5.3.2)
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(5.3.3)

and similarly for P3(Z), z E F3.
In order for the above analysis to be applicable, it must turn out that

Pz' P3 ~ 0, on their respective arcs, which will not always be the case. If the
densities are non-negative, let us label the sheets described above so that
sheet a has cuts Fz,F 3 , sheet b has cut Fz and sheet c cut F 3 • Then our
analysis shows that the dominant factors in the asymptotic behavior of pz(z),
P3(Z) are

pz(z) "" exp(n(6(z(b»)),

P3(Z) '" exp(n(6(z(C»)),
(5.3.4)

z E Cz (5.3.5)

We now consider how these results fit in with the conjecture of Section 3.
We take .9f constructed above as the surface of the conjecture. In some cases
it is found that sheet 1= sheet a and 8' = Fz +F 3 • The curve 8 is a closed
curve in C separating F z from F 3 and dividing C into C = Cz + C3 + 8. Let
8 divide sheet b into parts .9fbz , .9fb3 , where .9fbZ abuts Fz' and similarly for
sheet c, where .9fC3 abuts F3• We have .9f3= sheet 3 = .9fb3 + .9fcz , and sheet
2 is what is left of .9f.

In order that the predictions of Section 3.2 might apply, it is necessary
thatfz(z),f3(z) be single valued, z E .9fo. Equation (3.2.4) then gives

Xl(Z(3») +fz(z(1») Xz(Z(3») +f3(Z(1») X3(Z(3») = 0

Xl(Z(3)) +fz(z(Z)) Xz(Z(3)) +f3(Z(l)) X3(Z(3)) = 0

from which it follows that

XZ(Z(3)) = 0

Xl(Z(3)) = -f3(Z(1») X3(Z(3))

Similarly,

(5.3.6)

X3(Z(3)) = 0

Xl(Z(3») = _fz(Z(l»)XZ(Z(3))

For z E s with z E sheet c, (3.2.5) gives, with the help of (5.3.6),

(5.3.7)

z E sand z E sheet c (5.3.8)

which shows that R(z) has a meromorphic continuation in !JRcz given by
(f3(Z(C») - f3(Z(l)))xiz(C)). Similarly, there is a continuation of R(z) into
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gb3 given by (f2(Z(b») - fiz(l»))Xiz(b)). The function R(z) is therefore
meromorphic, z E g, and must have the form exp(n~(z)) X (a function with
a small number of poles, zeros). The predictions of the conjecture are
therefore in agreement with (5.3.4) if we interpret exp(~(z)) = 0 whenever
zEg3 •

From (3.2.3) we may in this case derive the relation, z E S',

3

p,(z) + L f}(z(l)) piz )
j=2

3

+ (2ni)-1 L f dt(!j+(t(l)) -!j_(t(I)))Pj(t)(t - Z)-I = 0 (5.3.9)
j=2 fj

which is a generalization of (1.2.5). With (5.3.4) and (5.3.9), it is easy to
show that PI(Z)"'" XI(Z(3»), where X,(Z(3)) is given by (5.3.6), (5.3.7). The
prediction is that almost all the zeros of PI(Z) approach S as in the general
case, but the zeros of piz), P3(Z) approach r2,r3, respectively, not the
general situation. The asymptotic density of zeros of piz) is piz) and
likewise P3(Z).

We have compared these predictions to the results of numerical
computations, some of which were reported in [3]. Whatever we have
calculated is consistent with the predictions, but additional calculations
would be of interest. For example [3], the surface

g: 1.8y 3- (1.2z +4.3)y2 + 2.6zy + z = 0 (5.3.10)

is of the type discussed here, with branch points at z = bj , j = 1,...,4,

bl ~ -1.9298 :y ~ -0.664

b2 =0 :y=O

b3 = 2 :y = 2

b4 ~ 4.95 :y ~ 2.998.

The points at infinity are given by

IX) (I): y = IX)

IX) (2): y = 2.5

IX)(3):y = -1/3

and we have

exp(~(z)) = [(y - 2.5)(y + 1/3)]-1.

The arcs r2 , r 3 are segments of the real axis.

(5.3.11)

(5.3.12)

(5.3.13)



372

In one example we chose
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f2(Z) = (1 - bl x)I/2

f3(Z) = [(I-b3x)(I-b4 x)p/2
(5.3.14)

which functions have poles of first, second order in the local variable at
z = b2 • An excellent fit to the numerical results is given by taking the
previous formulae with

R (z) = y - 2 exp(n~(z». (5.3.15)

We note that the formula (5.3.8) appears to hold throughout sheet c, not just
on !J!C2'

If in (5.3.14)f2(z) is replaced by

then a less accurate fit to be numerical results is given by

R(z) = [y(y - y(bl»]-I exp(n~(z».

(5.3.16)

(5.3.17)

For both these choices, the functions {Jj(j)} are single valued for z E !J!o,
although in each case poles and present in this region.

In these examples, then, we have strong support for the conjecture based
on a surface !J! constructed as described above with branch points bj ,

j= 1,...,4. If, however, we take the functions (5.3.14) with a different choice
for the points {bj }, another situation can arise. It may turn out that the
functions P2(Z), P3(Z) as constructed by the method described are found to be
not >0, an unacceptable situation, since they are supposed to represent the
asymptotic density of zeros in polynomials P2(Z), piz). As explained in [3]
we must look for another way of solving the equations obtained from the
saddle-point method. It was suggested that we look for a solution in which
one of the densities, say P3(Z), is zero for part of the interval b3b4' It was
shown that this may be done by following the previous approach with b3

replaced by bi. This point is determined by the condition that P3(bD = 0, and
we showed that, with b2 = 0,

(5.3.18)

The surface !J!, with square root branch points at z = bl , b2= 0, bi and b4 is

(5.3.19)
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For example, consider the choice
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(5.3.20)

which leads to b~ = 27/37. We label sheets a, b, c as before. It is found that
00 (b), 00 (e) correspond to

and that

oo(b): Y =Yb ~ -0.5119

00 (e): Y = Ye ~ 6.5119
(5.3.21 )

(5.3.22)

From this it follows that gp3 = sheet 3 = sheet b and that S = Fz, the
segment of the real axis blbz• There is a simple closed curve S; E C that
surrounds F z and passes through z = b~. We find that S' = S; +F 3 , where
F3 is the line segment b~b4' and sheet 1 = (that part of sheet a outside S;) +
(that part of sheet c inside S;).

The choice of gp means that 13(Z) has branch points on sheets 1, 2 at
z = b3 , a point inside the curve S;, but the functions II (z), IzCz) are single
valued, z E gpo' The situation comes under case 2 of the conjecture, Section
3.3 and we expect that

(5.3.23 )

where/3(z(I)±) mean the values of/JCz(l)) on either side of a cut ending at b3

on sheet 1. We deduce that on the cut

(5.3.24)

which we extend to the whole of gp3 by analytic continuation. This result is
consistent with (5.3.4), because, in this case,

(5.3.25)

With (5.3.24) the other equations of the conjecture become unambiguous
and reduce to (note Iz(z(l») =IzCz(Z»))

(5.3.26)
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and the boundary condition (3.2.5) rewritten with the help of (5.3.26),

z E r2 (5.3.27)

and similarly with the limits reversed. Again, the choice ofliz) shows that
R(z) is meromorphic, z E gp. Thus the conjecture predicts

where

R(z) = [(y - Yb)(y - Yc)]-n h(y)

(5.3.28)

(5.3.29)

with h(y) a meromorphic function of low degree and y is given by (5.3.19).
There is strong numerical support for this prediction with h(y) independent
of n, but we are not sure of its precise form. We note that (5.3.28) is
consistent with (5.3.4) and (5.3.9).

It is also of interest to remark that the numerical results are consistent
with

(5.3.30)

away from the interval b3b4 • Such a refinement of (5.3.24) and (5.3.4) is not
as yet within the scope of the conjecture.

The saddle-point method may also be applied to type II polynomials for
the same choices of functions {.fj(z)}. The polynomial Ql(Z) defined by
(3.2.12) is a generalized orthogonal polynomial of type II as defined by
(2.4.4) and a representation of the form (2.4.5) may be used. The dominant
factor in this integral is similar to I of (5.3.1) and the saddle point argument
will lead to the prediction.

(5.3.31 )

With a suitable choice of the arbitrary additive constant in ¢J(z), this may be
written

(5.3.32)

which, in the case of the first example of this section, is

zES' (5.3.33 )
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consistent with the conjecture, which predicts that most zeros of q I (z) will lie
near Sf.

When the branch points are all real and the discontinuities of the functions
Jj(z), j = 2, 3, are positive, we have a situation treated rigorously by G6ncar
and Rahmanov [17]. It may be shown that the asymptotic behavior
predicted above follows from their work.

6. POSSIBLE METHODS OF PROOF

This section contains some suggestions for proving the conjecture for
particular classes of function {Fj(x)}. We expect the conjecture to apply to
some functions not included in any of these classes.

6.1. Extension of Bernstein-Szeg6 Method

To extend the Bernstein-Szeg6 method [45] to the case m > 2 we need to
find a suitable generalization of (4.4.5), which relates the exact orthogonal
polynomial to the polynomial for an approximate weight. This can be done,
as we illustrate here, for type I polynomials with the help of the reproducing
kernels studied in Section 2.3, and a similar procedure no doubt exists for
type II polynomials.

We use the notation and assumptions of Sections 2.1-2.3, so that
FI(x) = 1. We suppose that ~(x), j = 1,..., m, with FI(x) = 1, are functions
that will be used to approximate {Fix)}, and that {Pj(P(/l,x)}, {Qj(.u(/),x)}
are the corresponding polynomials, with the same normality assumptions as
in Section 2.1. An approximation to the reproducing kernel (2.3.1) is defined
by (remember Jj(z) = Fj(z -I) and similarly ~(z))

m

Kjk(z,t)=zn+1 L Pj(P(/),z-I)QI(.u(/),t-l)tVfk(t)(t-z)-I,
/=1

j, k = 2,..., m. (6.1.1)

Integrating round a contour in the z-plane large enough to include all sheet 1
singularities of {Jj(z)} we find, with the help of (2.1.10),

m

L f dt Kjk(z, t)Pk(P(l), t- I ) tn
k=2

= £. f. f dtzn+lpj(p(/),z-I)[QI(.u(/l,t-l)tV-I_QI(.u(/),z-l)zV-IJ
/=1 k=2

X (t - z)-lfit)Pk(P(l), t- I ) tn+l. (6.1.2)

For I*" 1 the expression [ ](t - z) -I is a polynomial in t of degree v - 2 and
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so the corresponding contribution to (6.1.2) is zero by virtue of (2.2.2). For
I = 1 the expression is the sum of a polynomial in t of degree v - 2 and

(6.1.3)

where Q Iv means the coefficient of XV in Q(x). We thus obtain

m

L f dt Kjk(z, t) Pk(P(I), t- I) tn
k=2

= _znPj(p(I),Z-I) QI(,u(I»lv '£ f dtlk(t)Pk(P(l), t- I) tn
k=2

= 2niznPj(p(l), Z-I) QI(,u(l»lvPI(p(I»ln+1 (6.1.4)

from (1.3.1). Note that the last two factors in (6.1.4) cannot be zero on
account of (2.1.3).

In terms of the polynomials piz), j = 2,... , m, defined by (2.2.1) our results
may be written

Pj(z) = f dt Miz , t) '£ lit) h(t),
k=2

because of the reproducing property, and

tliiiz ) = f dt MAz, t) '£ Ik(t) Pk(t),
k=2

j=2,...,m

j=2,...,m

(6.1.5)

(6.1.6)

which is (6.1.4) with iiiz) defined in the same way as piz). We have used

m

Miz, t) = (2ni)-1 zn+1 L Pj(P(/), Z-l) QI(,u(/), t- I) qt - Z)-I. (6.1.7)
/=1

Subtracting (6.1.6) from (6.1.5) would give a generalization of (4.4.5), an
integral equation for the column {pit)}, which reduces to (4.4.5) when
m = 2. However, this equation is not likely to be useful for obtaining
asymptotics, and we now derive one that might be more suitable.

From (6.1.5) we have

m m

L Fiz ) piz ) - L Jj(z) piz )
j=2 j=2

m m

= L f dt(fj(z) - Jj(z» Miz, t) L lk(t) h(t).
j=2 k=2

(6.1.8)
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m m

L J;(i) Pi(i) - p. L J;(i) Pi(i)
i=2 i= 2

Now we multiply by L:7'=2 f dzl/i)M;(I,z) and use (6.1.5), (6.1.6) on the
left-hand side to obtain

(6.1.9)
m m m

= L f dz J;(i) M;(i, z) f dt )' (fj(z) - fj(z)) Mj(z, t) ~ lk(t) Pk(t).
i=2 j=2 k=2

This is an integral equation for the single quantity

m

u(z) = I fj(z) piz ).
j=2

(6.1.10)

From its solution we can obtain piz),j = 2,... , m (i.e. Pip(l), x» from (6.1.5)
and the polynomial pt(p(l), x) from

z nP t (P(1), z-t) = -(2ni)-t f dt £. fj(t) pit)(t - z)-t (6.1.11)
j=2

with z inside the contour of integration, an equation deduced from (1.3.1).
For (6.1. 9) to be useful, it is necessary that its kernel be small, and this

will only be the case if the integration contour is chosen appropriately. Let
us suppose that S' (see Section 3.1) is such that its complement is
connected, which corresponds to the situation in which sheet 1 of !:H is
connected. We collapse the integration contour onto S' and also take the
difference of the two versions of (6.1.9) obtained by taking the limit as
i ~ S' from opposite sides, giving

v(i) -p.v(i) =f dz f dt il(i, z)(ii(z, t) - H(z, t» v(t), iE S', (6.1.12)
S' S'

where
m

v(z) = 2: wiz ) piz )
j=2

m

v(z) = 2: wj(z)piz )
j=2

m

H(z, t) = I wiz ) Miz , t)
j=2

m

il(z, t) = I wj(z) Miz, t)
j=2

(6.1.13 )

(6.1.14)

(6.1.15)

(6.1.16)

with wiz), wiz) being the discontinuities offj(z),fj(z) on sheet 1 across Sf.

640/42/4-6
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Now the arbitrary additive constant in ,(z) of Section 3.1 may be chosen
so that

m

Re ~ ,(zU)) = 0
j=)

(6.1.17)

for the left-hand side is certainly constant, being a bounded harmonic
function, z E C.

Let us suppose that we are considering case 1 of the conjecture, Section
3.2. We take the functions {~(z)} to be meromorphic, z E gp, with poles
restricted to gpm' If these functions were independent of n, we expect that, as
in Section 4.1,

m

~ ~(z) Pj(z) = exp(n,(z)) 0(1)
j=)

and, with normalizations chosen to satisfy (2.1.9),

(6.1.18)

(6.1.19)

(6.1.20)

In fact the functions {~(z)} will depend on n, being chosen to approximate
{fj(z)} with increasing accuracy as n increases, but we assume that this is
done so that (6.1.18)--(6.1.20) still hold.

We deduce that

exp(-n Re ~(z(l))) v(z) = 0(1), zE S', (6.1.21 )

and we expect a similar relation to hold for v(z). It is sensible to rewrite
(6.1.12) as an equation for V(z),

giving

V(z) = exp(-n Re ~(z(l))) v(z), (6.1.22)

V(f)-IiV(f)=f dzf dtG(i,z)(G(z,t)-G(z,t))V(t), iES', (6.1.23)
s' S'

where

V(z) = exp(-n Re ~(z(l»)) v(z), z E S'

G(z, t) = exp(-n Re ,(z(l))) H(z, t) exp(n Re ~(t(I))),

G(z, t) = exp(-n Re ~(z(I))) ii(z, t) exp(n Re ~(t(l»)),

(6.1.24)

z,tES' (6.1.25)

z,tES'. (6.1.26)
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We see that G(l, z) = O( 1) except perhaps near z = l, and that

m

G(z, t) - G(z, t) = L (wJCz) - wJCz)) exp(-n Rq)(z(l)))
j=2

Now

379

(6.1.27)

exp(-n Re ¢(z(l) £lJCz, t) exp(n Re ¢(t(l))

= exp(n(Re ¢(z(m» - Re ¢(z(l»))) 0(1), z, t E S'. (6.1.28)

Thus for the method to work, it must be shown that it is possible to choose
{jj(z)} so that (6.1.18}-(6.1.20) hold and at the same time

z E S' (6.1.29)

the approach to zero being adequately fast.
Given the necessary results from approximation theory on Riemann

surfaces, the proof of the asymptotic conjecture for appropriate functions
{Fj(x)} should follow as in [37,31]. We expect that the above equations may
be modified to deal with the case when the complement of S' is not
connected, if this situation is possible.

6.2. Alternative Integral Equation Method

The method of deriving asymptotics using the Bernstein-Szego integral
equation [45] requires the discontinuity w(z) to have a particular form,
namely (1.1.2), where a(z) is strictly positive, later generalized to non-zero
[37]. This is because the polynomial p(z) is related through the integral
equation to the polynomial for weight corresponding to a(z) of the form
(polynomial in Z)-I, or, in other words, the polynomial corresponding to
{J}(z)} meromorphic on the surface y2 = l-z 2 with poles restricted to the
second sheet. The analogous procedure was used in [31] and has been
suggested in Section 6.1 for m > 2. If the dominant singularity of w(z) at
z = ± 1 is not inverse square root, then the Bernstein-Szego integral equation
method will fail, because the approximate weight cannot be made close
enough to the exact weight.

We now outline an approach to the proof of the asymptotic conjecture in
the case m = 2 for functions having dominantly power law singularities at
the branch points of !Jl. We suppose that fl(z) = 1 and f2(Z) has the form
(4.4.2), with S as described in connection with this equation. Near each end
bj of S we require

zES (6.2.1 )
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where piz) is a smooth, non-vanishing function near z = bj • Elsewhere, w(z)
is to be adequately smooth.

The method again involves the construction of an approximation K(z, t) to
the reproducing kernel written in the form

K(z, t) = (p(z) p*(t) - p*(z) p(t»(t - z) -I wet). (6.2.2)

The polynomials p(z), p*(z) must be chosen to approximate the orthogonal
polynomial piz) corresponding to degree n, n + 1, respectively.

Now, since K(z, t) is a polynomial in t of degree n, with coefficient of tn

proportional to p(z), we have

f dt K(z, t) pet) = I.nP(z)
S

(6.2.3)

where we have written p(z) for piz) of degree n. In addition, if we have
chosen p(z), p*(z) wisely, it should be possible to show that

f dt K(z, t) pet) = pet) +f dt L(z, t) pet)
s s

(6.2.4)

where L(z, t) is small in an appropriate sense for large n. Together (6.2.3),
(6.2.4) give the integral equation

p(z)=l.nP(z)-f dtL(z,t)p(t)
s

(6.2.5)

which can be solved by iteration for large n.
We base the construction of p(z), p*(z) on the asymptotic behavior

(3.2.7),

p(z) ~ X+(z) + X_(z), (6.2.6)

valid for z E S except near to each end bj • (We have written X(z) for X2(Z».
Near an end we find

(6.2.7)

From the results for Jacobi polynomials [45], which could be extended by
the use of Christoffel's formula (Section 2.5), and their generalization
(Section 5.1), we expect that, near an end hj

(6.2.8)

The n-dependent constants CI' C2 are related by the requirement that the
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expansion of (6.2.8) for large argument of the Bessel function coincides with
(6.2.6) after substituting (6.2.7). This leads to

(6.2.9)

where

(6.2.10)

Note that the region of validity of (6.2.8) will decrease with increasing n.
We suggest that p(z) be chosen as a polynomial that approximates the

expressions (6.2.6), (6.2.8) on the corresponding parts of S, and similarly
p*(z). It should be possible to do this with small error.

It may be that a zero of Y(z) of (3.7.7) lies on S, so that three arcs of S
meet there. The form (6.2.6) fails near such a point, but an appropriate
expression to use can be obtained from an asymptotic analysis of the
differential equation (5.1.16) as described by Olver [38].

6.3. Other Approaches

Since no general proof of the conjecture exists at present, it is of interest to
consider restricted classes of functions {Fj(x)}. Riemann modules [12, 13]
give rise to one such class. In Sections 4.7, 5.1 we have treated cases in
which each function Fj(x), j = 1,... , m, corresponds to the first component of
an element in a module. The examples of meromorphic functions and of
Sections 4.6, 5.2 also correspond to modules, although we have not used this
property.

For functions corresponding to a module, it may be shown that the H-P
polynomials (type I) and remainder function satisfy differential equations
with polynomial coefficients of degree independent of n. With the help of the
dual module, similar results can be demonstrated for type II polynomials.
Not all the coefficients in the differential equations can be evaluated
immediately. However, in the simple example of Section 5.1, where m = 2,
we have shown that it might be possible to deduce their asymptotic behavior
with the help of the Liouville-Green method [38], and so obtain H-P
polynomial asymptotics. If error bounds in this method could be calculated
for the case of higher order differential equations, then there is a chance that
our approach could be extended to m > 2.

The multiple integral formulae of Section 2.4 have proved useful (see
Section 5.3) in obtaining predictions by way of heuristic arguments involving
the saddle-point method [8]. There is a possibility, perhaps not very large,
that this method could be made rigorous. More study may be warranted.
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ApPENDIX 1

Here we demonstrate some properties of matrices needed in the discussion
of Section 4.7 and note some relations among generalized hypergeometric
functions that are a consequence of our approach. In this appendix, invariant
will be taken to mean invariant if any integers are added to the parameters
a1 ••• amc2 ••• cm'

From (4.7.9) we find that

(TG-1)j/ (GT-1)/k = L(l - aj) (nt*j L(at - aj») ( nt*/L(c/- ct) ),
L(l - ak) nt L(ct - aj) nNj,kL(C/- at)

j:l= k (AU)

and

where

Since

7C
L(x)=r(x)r(l-x)=-.-.

sm 7CX

(Al.2)

(AU)

(A1.4)

(A 1.5)

and the elements of K, C 2 are invariant, the form (4.7.21) of J shows that Vo
is invariant. Moreover, it is clear that (4.7.22) holds with Djj given by

1 nt L(ct - aj )
D ..=---~

JJ [L(1 - aj}p nt*j L(at - aY

Now suppose we have two contiguous sets of parameters and denote the
corresponding W by W(l), W(2), etc. Then from (4.7.18), (4.7.28) and
(4.7.24) we have

W(l)T W(2)=X(OO)(lf AT(lf KT(KT)-l DX- 1XT(2)Af(OO)

= X(OO)(lf T(lf DT(2)X(OO)(2) (A1.6)

or

m

W(1f W(2) = L y~OO)(1;x)y~OO)(2;x)G1k(1)Glk(2)Dkk' (Al.7)
k=1
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There is a similar relation involving y10), for which we sketch the
derivation. Using (4.7.13), (4.7.28) and (4.7.24) we find

W(1f W(2) = y<°)(1f C(G(lf)-1 T(I) DT(2) G(2)-1 Cf(0)(2). (A1.8)

Now (4.7.22) is equivalent to

(GT)-I TDTG- 1C2 = C2(GT)-1 TDTG- 1 (A 1.9)

and, since C2 is diagonal with no two diagonal elements the same, it must be
that

(Al.10)

with Q diagonal. The elements of Q may be found by equating diagonal
elements in

TDTG- l = GTQ. (Al.11)

In addition it may be seen from the form (4.7.9) that a diagonal matrix M
exists so that

T(I) G(1)-1 M(1)-l = T(2) G(2)-1 M(2)-I.

In fact

M .. = -:=-:--1--:- (n T(Ct») (n T(c j - C1»).
}} T(cj - aj ) t T(a t) 1*) T(cj - at)

Thus (A1.8) becomes

and if use is made of the form of Q it may be shown that

m

W(1 f W(2) = L y10) (1 ;x) y10)(2; x) ,uk(l, 2)
k=1

where

with

(AI.12)

(A l. l3)

(ALl4)

(ALl5)

(ALl6)

(ALl?)
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Now since WOV W(2) is unchanged after continuation round any branch
point, it must be a rational function of x with poles possible only at x = 0, 1,
00. The order of the poles at x = 0, 00 is immediately clear from (A1.l5),
(A 1.7), while at x = 1 the question is dealt with by applying the transfor
mation P of (4.7.36) and its dual (PT)-j to W. These ideas are used to
construct the type II polynomials in Section 4.7.2.

We note the form of (A1.15) in the special case when the two sets of
parameters are the same. In this case the rational function W(1 VW( 1) is a
constant and we have

m

L ylO)(x) ylO)(x),uk(l, 1) =,uj(1, 1).
k=j

In particular, with m = 2,

(AU8)

C~(C2 + 1)(c2- 1) ~j(al' a2; c2; x) ~j(-al' -a2; -c2; x)

- a jaic2- a j)(c2- a2) x 22Fj(1 + a j - c2' 1 +a2- c2, 2 - c2; x)

X 2Fj(1 - a j +c2' 1 - a2+ c2; 2 +c2; x) = C~(C2 + 1)(c2- 1). (AU9)

Other relations follow from (AI. 7).
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